PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Towards fully predictive CFD modelling of mixing processes

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Computational fluid dynamics (CFD) fundamentals have briefly been presented along with their applications to various mixing processes. On the basis of recently published papers, it was concluded that this analysis reached an advanced stage, being especially valuable in scaling-up and optimisation of mixing equipment. CFD has also promising prospects of further development and integration with other modern modelling methods leading to fully predictive mode of numerical simulations.
Rocznik
Strony
27--34
Opis fizyczny
Bibliogr. 65 poz., rys.
Twórcy
autor
  • Szczecin University of Technology, Faculty of Chemical Engineering, al. Piastów 42, 71-065 Szczecin, jaworski@ps.pl
Bibliografia
  • (1) Charpentier J.-C: The triplet ,,Molecular processes-product-process" engineering: the future of chemical engineering? Chemical Engineering Science, 2002, 57, 4667 -4690.
  • (2) Jaworski Z.: Numerical Fluid Dynamics in Chemical and Process Engineering (in Polish, Numeryczna mechanika płynów w inżynierii chemicznej i procesowej). Akademicka Oficyna Wydawnicza Exit, Warszawa, 2005a.
  • (3) Jaworski Z.: Trends in the CFD modelling of mixing processes, Plenary lecture, 10th Jubilee Polish Seminar on Mixing, Poznań 2005b.
  • (4) Patankar S. V: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, Washington, 1980.
  • (5) Chung T. J.: Computational Fluid Dynamics. Cambridge University Press, Cambridge, 2002.
  • (6) Succi S.: The Lattice Boltzmann Equation - for Fluid Dynamics and Beyond. Oxford University Press, Oxford, 2001.
  • (7) Casey M., Wintergerste T., Eds.: Best Practice Guidelines, Version 1.0, SIG Ercoftac: Quality and Trust in Industrial CFD, Sulzer Innotec, 2000.
  • (8) Ohkawa K., Nakamoto X, Inoue Y., Hirata Y.: Development of a plate static micromixer utilizing rotation of fluid interface and its mixing performance, Kagaku Kogaku Ronbunshu, 2005, 31(5), 352 - 360.
  • (9) Ohkawa K., Nakamoto T., Inoue Y., Hirata Y.: Development of a sigma-type plate static micromixer and its mixing performance, Kagaku Kogaku Ronbunshu, 2005, 31(6), 457 - 465.
  • (10) Tan W. H., Suzuki Y., Kasagi N., Shikazono N., Furukawa K., Ushida T: A lamination micro mixer for mu-immunomagnetic cell sorter, Jsme International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 2005, 48(4), 425 - 435.
  • (11) Haeberle S., Brenner T., Schlosser H. P., Zengerle R., Ducree J.: Centrifugal micromixer, Chemical Engineering & Technology, 2005, 28(5), 613 - 616.
  • (12) Hung C. I., Wang K. C., Chyou C. K.: Design and flow simulation of a new micromixer, Jsme International Journal Series B-Fluids and Thermal Engineering, 2005, 48(1), 17 - 24.
  • (13) Aubin J., Fletcher D. F., Xuereb C.: Design of micromixers using CFD modelling, Chemical Engineering Science, 2005, 60(8 - 9), 2503 - 2516.
  • (14) Heim M., Wengeler R., Nirschl H., Kasper G.: Particle deposition from aerosol flow inside a T-shaped micromixer, Journal of Micromechanics and Microengineering, 2006, 16(1), 70 - 76.
  • (15) Hasebe S.: Design and operation of micro-chemical plants - Bridging the gap between nano, micro and macro technologies, Computers & Chemical Engineering, 2004, 29(1), 57 - 64.
  • (16) Song H. S., Han S. P.: A general correlation for pressure drop in a Kenics static mixer, Chemical Engineering Science, 2005, 60(21), 5696 - 5704.
  • (17) Liu S. P., Hrymak A. N., Wood P. E.: Design modifications to SMX static mixer for improving mixing, AIChE Journal, 2006, 52(1), 150 - 157.
  • (18) Gatski T. B., Hussaini M. Y., Lumley J. L.: Simulation and Modeling of Turbulent Flows. Oxford University Press, New York, 1996.
  • (19) Pope, S., 2000, Turbulent Flows, Cambridge University Press, Cambridge, 2000.
  • (20) Launder B. E., Sandham N. D., Eds.: Closure Strategies for Turbulent and Transitional Flows. Cambridge University Press, Cambridge, 2002.
  • (21) Bałdyga J., Bourne J. R.: Turbulent Mixing and Chemical Reactions. Wiley & Sons, Chichester, 1999.
  • (22) Min J., Gao Z. M., Shi L. T: CFD simulation of mixing in a stirred tank with multiple hydrofoil impellers, Chinese Journal of Chemical Engineering, 2005, 13(5), 583 - 588.
  • (23) Kumaresan T., Nere N. K., Joshi J. B.: Effect of internals on the flow pattern and mixing in stirred tanks, Industrial & Engineering Chemistry Research, 2005, 44(26), 9951 - 9961.
  • (24) Kukukova A., Mostek M., Jahoda M., Machon V: CFD prediction of flow and homogenization in a stirred vessel: Part I vessel with one and two impellers, Chemical Engineering & Technology, 2005, 28(10), 1125 - 1133.
  • (25) Mostek M., Kukukova A., Jahoda M., Machon V: CFD prediction of flow and homogenization in a stirred vessel: Part II vessel with three and four impellers, Chemical Engineering & Technology, 2005, 28(10), 1134 - 1143.
  • (26) Li M. Z., White G., Wilkinson D., Roberts K. J.: Scale up study of retreat curve impeller stirred tanks using LDA measurements and CFD simulation, Chemical Engineering Journal, 2005, 108(1 - 2), 81 - 90.
  • (27) Rahimi M.: The effect of impellers layout on mixing time in a large-scale crude oil storage tank, Journal of Petroleum Science and Engineering, 2005, 46(3), 161 - 170.
  • (28) Kumaresan T., Joshi J. B.: Effect of impeller design on the flow pattern and mixing in stirred tanks, Chemical Engineering Journal, 2006, 115(3), 173 - 193.
  • (29) Javed K. H., Mahmud T., Zhu J. M.: Numerical simulation of turbulent batch mixing in a vessel agitated by a Rushton turbine, Chemical Engineering and Processing, 2006, 45(2), 99 - 112.
  • (30) Bilgen B., Chang-Mateu I. M., Barabino G. A.: Characterization of mixing in a novel wavy-walled bioreactor for tissue engineering, Biotechnology and Bioengineering, 2005, 92(7), 907 - 919.
  • (31) Baek H. K., Park N. S., Kim J. H., Lee S. J., Shin H. S.: Examination of three-dimensional flow characteristics in the distribution channel to the flocculation basin using computational fluid dynamics simulation, Journal of Water Supply Research and Technology-Aqua, 2005, 54(6), 349 - 354.
  • (32) Byun S., Oh J., Lee B. Y., Lee S.: Improvement of coagulation efficiency using instantaneous flash mixer (IFM) for water treatment, Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2005, 268(1 - 3), 104 - 110.
  • (33) Rahmani R. K., Keith T. G., Ayasoufi A.: Three-dimensional numerical simulation and performance study of an industrial helical static mixer, Journal of Fluids Engineering-Transactions of the Asme, 2005, 127(3), 467 - 483.
  • (34) Heniche M., Tanguy P. A., Reeder M. F., Fasano J. B.: Numerical investigation of blade shape in static mixing, AIChE Journal, 2005, 51(1), 44 - 58.
  • (35) Alcamo R., Micale G., Grisafi F., Brucato A., Ciofalo M.: Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine, Chemical Engineering Science, 2005, 60(8 - 9), 2303 - 2316.
  • (36) Yeoh S. L., Papadakis G., Yianneskis M.: Determination of mixing time and degree of homogeneity in stirred vessels with large eddy simulation, Chemical Engineering Science, 2005, 60(8 - 9), 2293 - 2302.
  • (37) Dhainaut M., Tetlie P., Been K.: Modeling and experimental study of a stirred tank reactor, International Journal of Chemical Reactor Engineering, 2006, 3.
  • (38) Magnico P., Fongarland P.: CFD simulations of two stirred tank reactors with stationary catalytic basket, Chemical Engineering Science, 2006, 61(4), 1217 - 1236.
  • (39) Fox R. O.: Computational Models for Turbulent Reacting Flows. Cambridge University Press, Cambridge, 2003.
  • (40) Bałdyga J.: Turbulent mixer model with application to homogeneous, instantaneous chemical reactions. Chemical Engineering Science, 1989, 44, 1175 - 1182.
  • (41) Mierka O., Stopka J., Kisa M., Jelemensky L.: Turbulent reacting flow simulation based on the multi-environment mixing model, Chemical Papers-Chemicke Zvesti, 2005, 59(6A), 394 - 402.
  • (42) Osenbroch L. K. H., Hjertager B. H., Solberg T: Experiments and CFD modelling of fast chemical reaction in turbulent liquid flows, International Journal of Chemical Reactor Engineering, 2005, 3.
  • (43) Baldyga J., Makowski L., Orciuch W.: Interaction between mixing, chemical reactions, and precipitation, Industrial & Engineering Chemistry Research, 2005, 44(14), 5342 - 5352.
  • (44) Akiti O., Yeboah A., Bai G., Armenante P. M.: Hydrodynamic effects on mixing and competitive reactions in laboratory reactors, Chemical Engineering Science, 2005, 60(8- 9), 2341 - 2354.
  • (45) Fitch A. W., Jian H. B., Ni X. W: An investigation of the effect of viscosity on mixing in an oscillatory baffled column using digital particle image velocimetry and computational fluid dynamics simulation, Chemical Engineering Journal, 2005, 112(1 - 3), 197-210.
  • (46) Regalia R.: Development of tangential rotors using numerical and experimental methodologies, Plastics Rubber and Composites, 2005, 34(2), 59 - 69.
  • (47) Montante G., Mostek M., Jahoda M., Magelli F.: CFD simulations and experimental validation of homogenization curves and mixing time in stirred Newtonian and pseudoplastic liquids, Chemical Engineering Science, 2005, 60(8 - 9), 2427 - 2437.
  • (48) Liu S. P., Hrymak A. N., Wood P. E.: Laminar mixing of shear thinning fluids in a SMX static mixer, Chemical Engineering Science, 2006, 61(6), 1753 - 1759.
  • (49) Brennen C. E.: Fundamentals of Multiphase Flow. Cambridge University Press, Cambridge, 2005.
  • (50) Randolph, A. D., Larson M. A.: Theory of Particulate Processes, 2nd ed. Academic Press, New York, 1988.
  • (51) Kuipers, J. A. M.: Multilevel modelling of dispersed multiphase flows, Oil & Gas Science and Technology - Rev.IFP, 2000, 55(4), 427 - 435.
  • (52) Kerdouss F., Kiss L., Proulx P., Bilodeau J. F, Dupuis C.: Mixing characteristics of an axial-flow rotor: Experimental and numerical study, International Journal of Chemical Reactor Engineering, 2005, 3.
  • (53) Gentric C., Mignon D., Bousquet J., Tanguy P. A.: Comparison of mixing in two industrial gas-liquid reactors using CFD simulations, Chemical Engineering Science, 2005, 60(8 - 9), 2253 - 2272.
  • (54) Liet-Gaubert M., Sardeing R., Xuereb C., Hobbes P., Letellier B., Swaels P.: CFD analysis of industrial multistaged stiffed vessels, Chemical Engineering and Processing,
  • 2006, 45(5), 415 - 427.
  • (55) Oncul A. A., Sundmacher K., Thevenin D.: Numerical investigation of the influence of the activity coefficient on barium sulphate crystallization, Chemical Engineering Science, 2005, 60(19), 5395 - 5405.
  • (56) Kulikov V., Briesen H., Marquardt W.: Scale integration for the coupled simulation of crystallization and fluid dynamics, Chemical Engineering Research & Design, 2005, 83(A6), 706 -717.
  • (57) Montante G., Magelli F.: Modelling of solids distribution in stirred tanks: analysis of simulation strategies and comparison with experimental data, International Journal of Computational Fluid Dynamics, 2005, 19(3), 253 - 262.
  • (58) Jones A., Rigopoulos S., Zauner R.: Crystallization and precipitation engineering, Computers & Chemical Engineering, 2005, 29(6), 1159 - 1166.
  • (59) Gong J. B., Wei H. Y., Wang J. K., Garside J.: Simulation and scale-up of barium sulphate precipitation process using CFD modeling, Chinese Journal of Chemical Engineering, 2005, 13(2), 167 - 172.
  • (60) Kagoshima M., Mann R.: Effects of convection, feed-separation and macro-mixing on particle size distributions for double-jet semi-batch precipitation in a stirred vessel, Chemical Engineering Science, 2005, 60(8 - 9), 2155 - 2165.
  • (61) Marchisio D. L., Soos M., Sefcik J., Morbidelli M., Barresi A. A., Baldi G.: Effect of fluid dynamics on particle size distribution in particulate processes, Chemical Engineering & Technology, 2006, 29(2), 191 - 199.
  • (62) Marchisio D. L., Soos M., Sefcik J., Morbidelli M.: Role of turbulent shear rate distribution in aggregation and breakage processes, AIChE Journal, 2006, 52(1), 158 - 173.
  • (63) Oncul A. A., Sundmacher K., Seidel-Morgenstern A., Thevenin D.: Numerical and analytical investigation of barium sulphate crystallization, Chemical Engineering Science, 2006, 61(2), 652 - 664.
  • (64) Schwarzer H. C., Schwertfirm F., Manhart M., Schmid H. J., Peukert W.: Predictive simulation of nanoparticle precipitation based on the population balance equation, Chemical Engineering Science, 2006, 61(1), 167 - 181.
  • (65) Bezzo F., Macchietto S., Pantelides C. C: A general framework for the integration of computational fluid dynamics and process simulation. Computers and Chemical Engineering, 2000, 24, 653 - 658.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0037-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.