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ABSTRACT   In this paper several classical neural 
oscillators (FitzHugh-Nagumo, Van der Pol, Hodgkin-Huxley) were 
studied. Although there are many known different oscillators, the 
Hodgkin-Huxley oscillator was more deeply investigated. Systems  
of two interconnected Hodgkin-Huxley neurons were also analyzed. 
Relationships between frequency and input current amplitude were 
found. 
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1. INTRODUCTION 
 

The brain is made up of many types of cells, including neurons, 
neuroglia, and the Shwann cells. The latter two types make up almost one-half 
of brain’s volume, but neurons are believed to be the key elements in signal 
processing. 
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There are as many as 1110  neurons in the human brain, and each can 
have more than 10,000 synaptic connections with other neurons. Neurons are 
slow, unreliable analog units, yet working together they carry out highly 
sophisticated computations in cognition and control [10].   

Most neurons communicate through action potentials – discrete short 
pulses of electrochemical activity. Action potentials are generated when the 
membrane potential of a neuron reaches a threshold value. They propagate 
along the axon of a cell toward synapses with postsynaptic neurons where they 
initiate ion currents that trigger (or inhibit) action potentials of the postsynaptic 
cell [9].    

In this paper several classical neural oscillators (FitzHugh-Nagumo, Van 
der Pol, Hodgkin-Huxley) were studied. Although there are many known 
different oscillators, the Hodgkin-Huxley oscillator was more deeply investigated. 
Systems of two interconnected Hodgkin-Huxley neurons were also analyzed. 
Relationships between frequency and input current amplitude were found.    
 
 
 
 
2. COMPARISON 
 
 

2.1. FitzHugh-Nagumo oscillator 
 

The FitzHugh [2] and Nagumo et. al. [5] equations describe the 
interaction between the voltage across the axon membrane, which is created by 
an input current inputI  and recovery variable R  which mainly reflects the 

outward potassium ions ( )+K  current across the nerve membrane. 
These are simplest equations that have been proposed for spike 

generation. Like Hodgkin--Huxley equations, they have a threshold for 
generating limit cycles and thus provide a qualitative approximation to spike 
generation thresholds. 

FitzHugh-Nagumo equations can be written as follows: 
 

( )

3
10 ,

3

0.8 1.25 1.5 ,

input
dV VV R I
dt

dR R V
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⎛ ⎞
= − − +⎜ ⎟⎜ ⎟
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= − + +
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here  
V  – voltage across the axon membrane,  

inputI  – input current,  

R  – recovery variable. 
 

In absence of input current, the equilibrium point is an asymptotically 
stable node. For inhibitory input current inputI  the equilibrium remains an 
asymptotically stable node. For excitatory inputI  (e. g. 5.1=inputI ) value, 

equilibrium point becomes an unstable node. Phase plane and simulated action 
potentials for FitzHugh-Nagumo equations are shown in Fig. 1. 
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Fig. 1. Spikes and phase plane of FitzHugh-Nagumo oscillator 
 
 

2.2. Van der Pol oscillator 
 

Van der Pol equations provided the first model of heart rhythms [7]. Its 
normal form is: 
 

( )2 2

,

,

dx y
dt
dy x y x u
dt

ω β

=

= + − +
          (2) 

 
where  

ω  – is the frequency. 
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The only equilibrium point of the system is (0,0). The Jacobian matrix of 
equilibrium is: 
 

2

0 1
A

ω β

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

t
 

 

so the eigenvalues are: ⎟
⎠
⎞⎜

⎝
⎛ −±= 22 4

2
1 ωββλ . 

 
For 0<β  the origin is an asymptotically stable spiral point, and for 0>β  

the origin is an unstable spiral. Phase planes and the response to different β  
values are shown in Figs. 2, 3, and 4 respectively. 
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Fig. 2. Van der Pol oscillator when 1−=β  
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Fig. 3. Van der Pol oscillator when 0=β  
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Fig. 4. Van der Pol oscillator when 2=β  

 
 

2.3. Hodgkin-Huxley oscillator 
 

The Hodgkin-Huxley [3] equations describe the change in membrane 
potentials V  as a function of the sodium NaI , potassium KI , leakage leakI , and 
stimulating inputI  currents across a nerve membrane as well as membrane 

capacitance C : 

Na K leak input
dVC I I I I
dt

= − − − +          (3) 

here  
( )2/ cmFC μ  – axon membrane capacitance. 

 
For each current ( )EVgI −= , where g  is the electrical conductance,  

V  is the voltage across the membrane, and E  is the equilibrium potential of the 
ion, computed from the Nernst equation [8]. 

Therefore the equation can be rewritten as: 

( ) ( ) ( )

( )
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Na Na K K leak leak input

m

h

n

dVC g m h V E g n V E g V E I
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dn n N V
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τ

= − − − − − − +

= − +

= − +

= − +

              (4) 
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Here hm, , and n  represent the rates of Na conductance channel 
activation, Na channel inactivation, and K channel activation respectively [1, 3, 4]. 
 As shown in [6] equations (4) can be approximately written in the form: 
 

( )( ) ( ) ( )

( )

3 4

2

2

( ) 1
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( 60)( ) 1 5exp
55
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    (5) 

 
Equations (5) can be simplified still further [2] which leads to equations of 

the form: 
 

( ) ( )

( )

( )

1 ( )
( )

Na Na K input

R

dVC g V V E R V E I
dt

dR R G V
dt Vτ

= − − − − +

= − +
                  (6) 

 
 

The phase planes and action potentials of (6) are shown in Fig. 5. 
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Fig. 5. Action potentials and the phase plane of Hodgkin-Huxley oscillator 
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3. RESPONSE TO INPUT CURRENT 
 

3.1. FitzHugh-Nagumo oscillator 
 

Here the threshold for input current is 1=I , so when I = 0.9 < 1, the 
system does not generate spikes (Fig. 6). 

When input current is greater then the threshold value, action potentials 
are generated (Fig. 7). 

Increasing input from I = 1 to I = 2, yields generation of action potentials 
with the same frequency, only the spike width is increased (Fig. 8). 

When the input current surpasses the saturation level (I = 2.1 - see Fig. 9), 
spikes are not generated. 
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Fig. 6. FitzHugh-Nagumo oscillator when I = 0.9 
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Fig. 7. FitzHugh-Nagumo oscillator when I = 1 
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Fig. 8. FitzHugh-Nagumo oscillator when I = 2 
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Fig. 9. FitzHugh-Nagumo oscillator when I = 2.1 
 

 
3.2. Van der Pol oscillator  

 
When step input 1=u  is applied, and parameter 1−=β , the equilibrium 

point is no more an origin, but it is still an asymptotically stable spiral point, and, 
as shown in Fig. 10, the system decays faster to steady state with less 
oscillations .  

When step input 1=u  is applied to the system with 0=β , the system’s 
oscillations are roughly the same as in previous example when 1−=β  and 

1=u  (Fig. 11). 
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If a step input is applied to the system, when 1=β , the phase trajectory 
becomes an asymptotically stable spiral, like in the examples above, but slightly 
greater oscillations are observed (Fig. 12). 

Thus, comparing Figs. 2, 3, 4 and 10, 11, 12 we can conclude, that 
application of a step input 1=u  to the system makes it more stable and less 
oscillating. Even when the initial system is unstable (with 0=u  and 1=β , see 
Fig. 3), setting 1=u  makes it stable (Fig. 11). 

Changing the input signal from 0=u  to 1=u  with 1.0=Δu  shows, that 
when increasing u , amplitude of oscillations decreases until 5.0=u . If 5.0=u , 
the output signal 0=V . Further increasing of u  leads to decreasing the number 
of oscillations and increasing the amplitude of the first oscillation (Fig. 13). 
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Fig. 10. Van der Pol oscillator when 1,β = − 1u =  
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Fig. 11. Van der Pol oscillator when 0,β = 1u =  
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Fig. 12. Van der Pol oscillator when 1,β = 1u =  
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Fig. 13. Van der Pol oscillator when 1,β = 3u =  

 
3.3. Hodgkin-Huxley oscillators 

 
When 0=I  there are no action potentials, because the input parameter 

I  is below the threshold, so the system is in resting state (Fig. 14). When 
1.0=I , the limit cycle exist and spikes are generated. (Fig. 15). As the input 

current is increased from 1.0=I  to 5, the spike frequency is also increased and 
the amplitude (except first spike) is decreased (Figs. 16, 17, 18, 19, 20). At 

6=I , the limit cycle is very small in comparison with the input current 
amplitude, so only one spike is visible as the system follows phase trajectories. 
In this case the system is similar to the one which has an asymptotically stable 
spiral point as shown in Fig. 21. 
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Fig. 14. Hodgkin-Huxley oscillator when 0=I  
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Fig. 15. Hodgkin-Huxley oscillator when 1.0=I  

 

0 2 4 6 8 10 12 14 16 18 20
−100

−50

0

50

V
(t

)

Time(ms) −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
 

Fig. 16. Hodgkin-Huxley oscillator when 5.0=I  
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Fig. 17. Hodgkin-Huxley oscillator when 1=I  
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Fig. 18. Hodgkin-Huxley oscillator when 5.1=I  
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Fig. 19. Hodgkin-Huxley oscillator when 2=I  
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Fig. 20. Hodgkin-Huxley oscillator when 3=I  
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Fig. 21. Hodgkin-Huxley oscillator when 6=I  
 
 
 
 
4. INTERCONNECTIONS 
 
 

4.1. Serial interconnection of two neurons 
 

There are two identical neurons described by Hodgkin-Huxley equations. 
The neurons also have identical initial conditions. The first neuron's input signal 
is the input current I, however the second neuron's input signal is the train of 
action potentials generated by the first neuron as depicted in Fig. 22. 
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Fig. 22. Serial interconnection of two neurons 

 
 

When the input current 0=inputI , the first neuron generates no spikes (see 

Fig. 14). The response and the phase plane of H2 are shown in Fig. 23. 
 
 
 

0 2 4 6 8 10 12 14 16 18 20
−70.05

−70

−69.95

−69.9

−69.85

−69.8

−69.75

−69.7

−69.65

−69.6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
 

Fig. 23. Response and phase plane of the system when 0inputI =  

 
 

If the input current becomes 1.0=inputI , then the first neuron begins to 

fire spikes, as shown in Fig. 15. In response to the periodic spike train, 
generated by the first neuron, the second neuron generates a similar spike 
train, only these spikes have slightly different shape (fig. 24). 
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Fig. 24. Response and phase plane of the system when 0.1inputI =  

When 5.0=inputI  and 7.0=inputI  the system response is shown in Figs. 25 

and 26 respectively. 
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Fig. 25. Response and phase plane of the system when 0.5inputI =  
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Fig. 26. Response and phase plane of the system when 0.7inputI =  
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Similar behaviour of the system is observed until the input current value 
is below 1.4 (see Figs. 27, 28). A remarkable fact is that for obtaining spikes 
from a single neuron we must destabilize the system with a large input signal 
value. And this value must be bigger if we want have a higher frequency of 
spikes. However when a neuron is excited by another neuron, these 
disturbances are smaller (see phase planes in Figs. 18 and 28 respectively).  

Also when input current 4.1=inputI , the second neuron fails to respond to 
the sixth input spike as shown in Fig. 29. When the input current 2=inputI  the 

phase shift phenomenon [8] is observed as shown in Fig. 30. 
Figure 31 shows how the frequency of spikes depends on the input 

current value. Here we can see, that the frequency of spikes increases quasi-
exponentially, until the input value reaches about 1.4. Figure 32 shows a part  
of Fig. 31 emphasizing the interval 0...1.4 of the input current.  
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Fig. 27. Response and phase plane of the system when 1inputI =  
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Fig. 28. Response and phase plane of the system when 1.2inputI =  



Comparative study of divers’ oscillators 35

 
 

0 2 4 6 8 10 12 14 16 18 20
−100

−50

0

50

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
 

Fig. 29. Response and phase plane of the system when 1.4inputI =  
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Fig. 30. Response and phase plane of the system when 2inputI =  

 
 
 
 
 

PROCEEDINGS OF ELECTROTECHNICAL INSTITUTE, Issue 226, 2006  



B. Karaliunas, D. Shulskis  36

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

10

Input current

N
um

be
r 

of
 s

pi
ke

s

 
 

Fig. 31. Dependency of frequency on the input current when 0...6inputI =  
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Fig. 32. Dependency of frequency on the input current when 0...1.4inputI =  
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4.2. Negative feedback loop  
interconnection of two neurons 

 
When neurons H1 and H2 are connected in a negative feedback loop, as 

shown in Fig. 33, additional time constant is needed to slow down the neuron's 
H2 response, because when neuron, H2 excites neuron H1 equally fast, both 
spike trains stop very fast. 

The Behavior of the system according to input currents 1=inputI  and 
2=inputI  is shown in Figs. 34, 35, 36, 37 respectively. 

 
 
 

 
 

Fig. 33. Negative feedback loop interconnection of two neurons 
 
 
 
Figure 38 shows how the frequency of spikes depends on the input 

current value. Figure 39 shows a part of Fig. 38 emphasizing the interval 0...2  
of the input current. In this interval the last spikes are inhibited by means of 
negative feedback loop. The increase in the frequency of spikes is linear when 
the value of the input current is 0...2.     
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Fig. 34. Response of the H1 when 1inputI =  
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Fig. 35. Response of the H2 when 1inputI =  
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Fig. 36. Response of the H1 when 2inputI =  
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Fig. 37. Response of the H2 when 2inputI =  
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Fig. 38. Dependency of frequency on the input current when 0...6inputI =  
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Fig. 39. Dependency of frequency on the input current when 0...2inputI =  

 
 

4.3. Positive feedback loop  
interconnection of two neurons 

When neurons H1 and H2 are connected in positive feedback loop, as 
shown in Fig. 40, additional time constant is needed to slow down neuron's H2 
response. Behavior of the system according to input currents 1=inputI  and 

2=inputI  is shown in Figs. 41, 42, 43, 44 respectively. 

 

Fig. 40. Positive feedback loop interconnection of two neurons 
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Figure 45 shows how the frequency of spikes depends on the input 
current value when neurons are connected as shown in Fig. 40. 
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Fig. 41. Response of the H1 when 1inputI =  
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Fig. 42. Response of the H2 when 1inputI =  
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Fig. 43. Response of the H1 when 2inputI =  
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Fig. 44. Response of the H2 when 2inputI =  
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Fig. 45. Dependency of frequency on the input current when 0...6inputI =  
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5. CONCLUSION 
 
1. Three classical oscillators: FitzHugh-Nagumo, Van der Pol, Hodgkin-Huxley 

were compared.  
2. Serial and parallel interconnections of two neurons, described by Hodgkin-

Huxley differential equations were analyzed. Graph of firing frequency versus 
input current was plotted. When neurons are connected in series, growth of 
frequency of spikes vs. input current is similar to exponential. When neurons 
are connected in parallel, growth of frequency is linear. 

3. When input current of the system of two neurons exceeds a particular value, 
then the phase shift phenomenon and a behavior similar to chaos is 
observed.        

 
 
 
LITERATURE 
 

1. Cronin, J. (1987) Mathematical Aspects of Hodgkin-Huxley Neural Theory. Cambridge 
University Press, Cambridge. 

2. Fitzhugh, R. (1961) Impulses and physiological states in models of nerve membrane. 
Biophys. J., 445-466. 

3. Hodgkin, A. L., Huxley, A. F. (1952) A quantitative description of membrane current and its 
application to conduction and excitation in nerve. J. Physiol.117, 500-544. 

4. Johnston, D. and Wu, S. M. (1995) Foundations of Cellular Neurophysiology. MIT Press, 
Cambrige, MA. 

5. Nagumo, J. S., Arimoto,  S., and Yoshizawa, S. (1962) An active pulse transmission line 
simulating a nerve axon. Proc. IRE 50, 2061-2070. 

6. Rinzel, J. (1985) Excitation dynamics: insights from simplified membrane models. Fed. 
Proc. 44, 2944-2946. 

7. Van der Pol, B. (1926) On relaxation oscillations. Phil. Mag. 2, 978-992. 

8. Wilson, H. R. (1999) Spikes, Decisions, and Actions. The dynamical foundation of 
neuroscience. Oxford University Press, Inc., New York. 

9. Hopfiel J. J., Herz A. V. M. (1995) Rapid local synchronization of action potentials: Toward 
computation with coupled integrate-and-fire neurons. Proc. Natl. Sci. USA. Vol. 92, pp. 
6655-6662.  

10. Izhikevich E. M. (2000) Neural Excitability, Spiking and Bursting. International Journal of 
Bifurcation and Chaos. Vol. 10, N. 6.  

 
 

Manuscript submitted 16.11.2004 



B. Karaliunas, D. Shulskis  44

 
 
 

PORÓWNAWCZE BADANIA  
RÓŻNYCH OSCYLATORÓW 

 
 

Bronius KARALIUNAS  
Dinas SHULSKIS 

 
STRESZCZENIE  Artykuł omawia kilka klasycznych oscyla-
torów neutralnych (FitzHug-Nagumo, Van der Pol, Hodgkin-Huxley). 
Jakkolwiek znanych jest wiele różnych oscylatorów, jednak oscylator 
Hodgkin-Huxley został zbadany dokładniej. Przeanalizowano też 
układy dwu połączonych neuronów Hodgkin-Huxley. Podano zależ-
ność częstotliwości od amplitudy prądu wejściowego. 


