PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sprzężone pole magneto-termiczne silnika indukcyjnego z uszkodzoną klatką wirnika

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Coupling magneto-thermal field of induction motor with broken rotor bars
Konferencja
Problemy eksploatacji maszyn i napędów elektrycznych (2005; Ustroń, Polska)
Języki publikacji
PL
Abstrakty
EN
The work presented calculation results of a small power (1.5 kW) squirrel cage motor warm-up. Computation was realized with normal load. There is two models: one with non-damaged rotor and second one with three broken rotor bars. Calculation of coupling transient magneto-thermal field was realized with two-dimensional field-circuit motor model. There is a linear temperature characteristic of aluminum resistivity in squirrel cage, and a linear temperature characteristic of a thermal parameters in squirrel cage and core. Heating characteristic of motor with non-damaged rotor and another one with three broken rotor bars was compared. Heat distribution in rotor was investigated in both situation, in thermal transient state and after.
Rocznik
Tom
Strony
267--272
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Instytut Maszyn, Napędów i Pomiarów Elektrycznych, Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
autor
  • Instytut Maszyn, Napedów i Pomiarów Elektrycznych Politechnika Wrocławska Wybrzeże Wyspianskiego 27 50-370 Wrocław
Bibliografia
  • [1]. Antal L., Antal M., Weryfikacja eksperymentalna obwodowo–polowego modelu silnika indukcyjnego, Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej, Nr 54, Studia i Materiały, Nr 23, Wrocław 2003, s. 39-48
  • [2]. Antal L., Antal M., Zawilak J., Weryfikacja modelu obliczeniowego silnika klatkowego pomiarami statycznych i dynamicznych stanów pracy, Problemy eksploatacji maszyn i napędów elektrycznych. PEMINE. Ustron, 19-21 maja 2004, Zeszyty Problemowe BOBRME Komel, nr 69 2004, s. 99-104
  • [3]. Boglietti, A.; Cavagnino, A.; Lazzari, M.; Pastorelli, M.; A simplified thermal model for variable-speed self-cooled industrial induction motor, IEEE Transactions on Industry Applications, Volume: 39 , Issue: 4 , July-Aug. 2003, pp. 945 – 952.
  • [4]. Duran, M.J.; Fernandez, J., Lumped-parameter thermal model for induction machines, IEEE Transactions on Energy Conversion, Volume: 19, Issue: 4 , Dec. 2004, pp. 791 - 792
  • [5]. FLUX® 8.10 User’s guide, Cedrat, MEYLAN Cedex, June 2003, http://www.cedrat.com
  • [6]. FLUX® 8.10 2D Application. Tutorial of steady state and transient thermal, Cedrat, MEYLAN Cedex, August 2003, http://www.cedrat.com
  • [7]. FLUX® 8.10 2D Application. Induction heating tutorial, Cedrat, MEYLAN Cedex, December 2003, http://www.cedrat.com
  • [8]. Ho, S. L.; Fu, W. N., Analysis of indirect temperaturerise tests of induction machines using time stepping finite element method, IEEE Transactions on Energy Conversion, Volume: 16 ,Issue: 1 ,March 2001, pp. 55 - 60
  • [9]. Ibtiouen, R.; Mezani, S.; Touhami, O.; Nouali, N.; Benhaddadi, M., Application of lumped parameters and finite element methods to the thermal modeling of an induction motor, Electric Machines and Drives Conference, 2001. IEMDC 2001 IEEE International , 2001, pp. 505 – 507
  • [10]. Kral, C.; Habetler, T. G.; Harley, R.G.; Pirker, F.; Pascoli, G.; Oberguggenberger, H.; Fenz, C.-J. M., Rotor temperature estimation of squirrel-cage induction motors by means of a combined scheme of parameter estimation and a thermal equivalent model, , IEEE Transactions on Industry Applications, Volume: 40, Issue: 4, July-Aug. 2004, pp.1049 - 1057
  • [11]. Lee Y.; Hahn S. Y.; Kauh, S. K., Thermal analysis of induction motor with forced cooling channels, IEEE Transactions on Magnetics,, Volume: 36 , Issue: 4, July 2000, pp. 1398 - 1402
  • [12]. Liu Y.; Lee Y.; Jung H. K.; Hahn S. Y.; Youn J. H.; Kim K. W.; Kwon J. L.; Bae D.; Lee J. I.; 3D thermal stress analysis of the rotor of an induction motor, IEEE Transactions on Magnetics, Volume: 36 , Issue: 4 , July 2000, pp. 1394 - 1397
  • [13]. Maximini, M.; Koglin, H.-J., Determination of the absolute rotor temperature of squirrel cage induction machines using measurable variables, IEEE Transactions on Energy Conversion, Volume: 19 , Issue: 1 , March 2004, pp. 34 - 39
  • [14]. Mihalcea, A.; Szabados, B.; Hoolboom, J., Determining total losses and temperature rise in induction motors using equivalent loading methods, IEEE Transactions on Energy Conversion, Volume: 16, Issue: 3 , Sept. 2001, pp. 214 - 219
  • [15]. Okoro, O. I.; Weidemann, B.; Ojo, O., An efficient thermal model for induction machines, Industry Applications Conference, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE , Volume: 4 , 3-7 Oct. 2004, pp. 2477 - 2484
  • [16]. Rajagopal, M. S.; Seetharamu, K.N.; Ashwathnarayana, P. A., Transient thermal analysis of induction motors, IEEE Transactions on Energy Conversion, Volume: 13, Issue: 1, March 1998, pp. 62 - 69
  • [17]. Said, M. S. N.; Benbouzid, M. E. H., H-G diagram based rotor parameters identification for induction motors thermal monitoring, IEEE Transactions on Energy Conversion, Volume: 15, Issue: 1 , March 2000, pp. 14 - 18
  • [18]. Said, M. S .N.; Benbouzid, M. E. H.; Benchaib, A., Detection of broken bars in induction motors using an extended Kalman filter for rotor resistance sensorless estimation, IEEE Transactions on Energy Conversion, Volume: 15, Issue: 1, March 2000, pp. 66 - 70
  • [19]. Staton D., Pickering S., Lampard D., Recent Advancement in the Thermal Design of Electric Motors, SMMA 2001 Fall Technical Conference “Emerging Technologies for Electric Motion Industry”, Durham, North Carolina, USA, 3-5 Oct, 2001
  • [20]. Valenzuela, M.A.; Verbakel, P.V.; Rooks, J.A.,Thermal evaluation for applying TEFC induction motors on short-time and intermittent duty cycles, IEEE Transactions on Industry Applications, Volume: 39, Issue: 1, Jan.-Feb. 2003, pp. 45 - 52
  • [21]. Xyptras, J.; Hatziathanassiou, V., Thermal analysis of an electrical machine taking into account the iron losses and the deep-bar effect, IEEE Transactions on Energy Conversion, Volume: 14, Issue: 4, Dec. 1999, pp. 996 - 1003
  • [22]. Zawilak J., Antal M., Obwodowo-polowy model silnika indukcyjnego klatkowego z uszkodzonym prętem wirnika. 39th International Symposium on Electrical Machines SME 2003. Conference proceedings, Gdańsk-Jurata, June 9-11, 2003. Gdańsk, P103, 6 s.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0033-0078
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.