
Paper An exact algorithm for design

of content delivery networks

in MPLS environment
Krzysztof Walkowiak

Abstract—Content delivery network (CDN) is an efficient and

inexpensive method to improve Internet service quality. In

this paper we formulate an optimisation problem of replica

location in a CDN using MPLS techniques. A novelty, com-

paring to previous work on this subject, is modelling the net-

work flow as connection-oriented and introduction of capac-

ity constraint on network links to the problem. Since the

considered optimisation problem is NP-complete, we propose

and discuss exact algorithm based on the branch-and-cut and

branch-and-bound methods. We present results of numeri-

cal experiments showing comparison of branch-and-cut and

branch-and-bound methods.

Keywords—content delivery network, optimization, branch-and-

cut algorithm.

1. Introduction

In recent years we observe a tremendous increase in data

traffic, caused mainly by the growth of the Internet as well

as introduction of many new services. Concurrently, corpo-

rate and individual users demand more bandwidth and more

functions with quality of service (QoS) guarantees. The ex-

isting Internet sometimes cannot cope with all challenges

that are to be addressed by computer networks in near fu-

ture. Therefore, new solutions are being developed to over-

come most of problems now being encountered by major

players of the telecommunication world. Operators focus

on new ideas and concepts to enable radical transformation

of networks and service infrastructures. In order to achieve

a success, the service provider should: develop an efficient

transport network; offer and constantly change a huge num-

ber of value-added, improved services; construct business

plan to make profits delivering those services.

Content delivery network (CDN) is an interesting and ro-

bust method to improve the Internet quality. CDN uses

many servers offering the same content replicated in var-

ious locations. User-perceived latency and other qual-

ity of service parameters can be easily and inexpensively

improved by various techniques of Web content caching.

Every replicated system must deal with two fundamental

issues—distributing requests to object replicas and decid-

ing on placement of replicas. In this work we focus on

the second problem. The issue of distributing requests to

object replicas is strongly discussed in the literature.

In this work we address problems of CDN design

in multiprotocol label switching (MPLS) environment.

The MPLS approach proposed by the Internet engineering

task force (IETF) is a networking technology that enables

traffic engineering and QoS performance for carrier net-

works. MPLS is a connection-oriented technique, which

is becoming a popular solution for backbone networks and

must be taken into account in the design of Web repli-

cation system. Since the considered optimization prob-

lem is NP-complete, we propose an exact algorithm using

the branch-and-cut approach. It must be noted that results

of this work can be applied also to networks using other

connection-oriented technologies (e.g., asynchronous trans-

fer mode—ATM) or connectionless protocols (e.g., IP).

The paper is organized as follows. Section 2 presents a brief

description of CDNs and Web server caching issues. In

Section 3 we report on the previous work in the field of

replica placement problems. In Section 4 we formulate

an optimization problem of replica location in a CDN us-

ing MPLS. Section 5 contains an exact algorithm solving

the replica location problem. In Section 6 we present and

discuss results of numerical experiments. Last section con-

cludes this work.

2. Content delivery networks

and Web caching

Content delivery networks are defined as mechanisms to

deliver a range of content to end users on behalf of origin

Web servers. The original information is offloaded from

source sites to other content servers located in different

locations in the network. For each request, the CDN tries to

find the closest server offering the requested Web page [16].

CDNs deliver the content from the origin server to replicas

located much closer to end-users. The set of content stored

in CDNs servers is selected carefully. Therefore, the CDNs’

servers can approach the hit ratio of 100%. It means that

almost all requests to replicated servers are satisfied. CDNs

techniques are based on caching and replication of Web

content. The general architecture of CDN system can be

found in [23].

Caching is a technique typically applied to bring parts of

an overall data set closer to its processing site [3]. A Web

cache is an application residing between Web servers pro-

viding various content and clients that want to fetch the in-

formation [27]. Caching employs the knowledge acquired

by several analyses on servers’ access logs and by looking

13

Krzysztof Walkowiak

into Web users behavior. Caching can reduce latency expe-

rienced by end users when trying to fetch some documents

through their Web browser.

Replication can be considered as a kind of caching. Never-

theless, there is some dissimilarity. Replication presumes

storing of an object at a place that cannot see the object,

while caching is storing of an object at a place that sees

the source object. It means that a cache notices both hit

and miss requests. Since requests to replicated server ar-

rives only if that server is believed to have a replica of the

requested object, the replica notices only hits. In the pre-

sented sense, replica is sometimes called push cache [25].

Replication is perceived also as a caching system with only

one source Web server generating content, while standard

caching must serve a great number of Web servers [17].

An important issue to resolve is the choice between static

and dynamic replica placement. In the static replica place-

ment the system administrator, according to observed ac-

cess and traffic statistics, decides where replicas should be

located. Dynamic replica placement assumes that the sys-

tem monitors access to various servers and adapts set of

replicas to changing requirements [25].

One of the most important issues of Web caching is the

mechanism used for requests redirection. Transparent repli-

cation assumes redirecting a client’s request for a docu-

ment to one of the physical replicas. The most popular

practical and theoretical approaches of requests redirec-

tion: client multiplexing, IP multiplexing, DNS indirec-

tion, HTTP redirection and anycast, peer-to-peer routing

have been discussed in [23, 25, 28].

Web caching and replication in CDNs are becoming pop-

ular for many reasons. The most important are [6, 28]:

reducing the cost of using the Internet, reducing the latency

of WWW, bandwidth will always have some cost, non-

uniform bandwidth and latencies, network distances grow,

bandwidth requirements continue to increase, hot spots in

the Web will continue, costs of communication exceed costs

of computations, traffic engineering requirements, the need

for survivability.

For more information on WWW please refer to [34, 35].

3. Related work

An important issue in the design of robust and survivable

CDN is the replica placement. In this section we exam-

ine the previous work on replica placement problems. For

the context of this paper we are interested in static replica

placement. The main problem of static replica placement

is to develop effective algorithms for replica location. Some

previous authors have developed such algorithms. Accord-

ing to [24], the first work in this area is [19]. Li et al.

formulate in [19] a problem of proxies’ location in a tree

topology with the objective function of selection of prox-

ies cost. A dynamic programming algorithm is proposed.

The objective function can be calculated as the overall net-

work latency if the link distance is associated with the cost

function.

Authors of [17] take into account the cache location prob-

lem for transparent caches. The objective function is the

cost of serving demands using a cache in a given location.

Since the general problem is NP-complete, Krishnan et al.

analyze only regular topologies: homogenous line, general

line and ring.

Qiu et al. formulate in [24] problem of the placement of

web server replicas as an uncapacitated k-median problem

related to the facility location problem. They restrict the

maximum number of replicas, but they don’t restrict the

number of requests served by each replica. The goal of the

optimization process is to minimize the total cost of all re-

quests defined as a sum of a distance between origin node

and destination node over all requests. A greedy algorithm

and a super-optimal algorithm based on the Lagrangian re-

laxation are proposed.

Guha et al. consider in [8] a generalization of the standard

facility problem and introduce the requirement for fault-

tolerant mechanisms. Every demand point is served by

a number of facilities instead of just one. The closest facil-

ity is the working one, while other facilities serve as backup

facilities. The objective function is a weighted combina-

tion of facilities locations’ costs. An algorithm using the

filtering technique and fractional demands is provided.

Authors of [10] present a simple and natural greedy algo-

rithm for the metric uncapacitated facility location problem

and k-median problem.

Arya et al. analyze in [2] a local search heuristics for fa-

cility location and k-median problems. The main operation

of the proposed algorithm is swap, which includes closing

one facility and opening another; clients of the closed fa-

cility are assigned to other facilities. In [4] an improved

combinatorial approximation algorithms for the uncapaci-

tated facility location and k-median problems are proposed

and discussed.

The replica placement problem can be modeled as a center

placement problem. The k-HST (k-hierarchically well sep-

arated tree) approach can solve this problem [11, 23].

Jamin et al. propose a topology-informed placement strat-

egy, called “transit node”. This heuristic applies the

outdegree—information on the number of other nodes con-

nected to a given node. It is assumed that a node with

the highest outdegrees can reach more nodes with lower

latency. Therefore, the servers are placed in nodes sorted

in descending order of outdegrees [12, 23].

Wierzbicki formulates in [36] the Internet cache loca-

tion problem in a CDN as a mixed integer program-

ming (MILP). New models of cache location are proposed

in order to overcome the limitations of the basic model.

The complexity of the MILP formulation is evaluated.

The primary concern in most of works discussed above

is analyzing the replica location problem as one of well-

known optimization problems: k-facility location problem,

k-median problem and center placement problem. The first

problem consists of assignment of clients to k facilities that

can be located in network nodes. The objective is to min-

imize the total cost including the connection cost of each

14

An exact algorithm for design of content delivery networks in MPLS environment

client and the facility cost. The k-median problem gener-

ally differs from the facility problem in one thing: there

is no cost for opening facilities. The main element of both

discussed problems is location of k facilities, i.e., selec-

tion of k nodes of the network for hosting a facility. Since

one can select the closest replica in terms of connection

cost, assignment of individual clients to a particular replica

is much simpler. Capacity constraints on network links

are not considered. However, in a capacitated version of

facility location problem there is a capacity constraint on

load served by each facility. The center placement problem

consists of the placement of a given number of centers in

order to minimize the maximum distance between a node

and the nearest center.

4. Optimization problem of CDN design

in MPLS environment

We propose a different approach then in previous works.

Our model is much closer to problems encountered in real

computer networks. The main difference is that we take into

account capacity constraints on each link of the network. In

many cases networks are congested. Therefore, the capacity

resources must be used in effective manner. Furthermore,

we consider an MPLS network that is a connection-oriented

network, i.e., the flow is modeled as a non-bifurcated mul-

ticommodity flow. Most of the work in the field of replica

placement considers pure IP networks using multicommod-

ity bifurcated flow.

In this section we formulate the optimization problem of the

content delivery network design using the MPLS technique.

The problem is very close to the replica location (RL) prob-

lem discussed in [30–31]. We model the MPLS network

flow as non-bifurcated multicommodity flow. However, re-

sults of this work can be also applied to connection-less

networks. For more information on modeling of flow in

MPLS network and non-bifurcated multicommodity flows,

see [7, 14, 15, 18, 26, 29].

We begin presentation of the problem by introducing the

notation. We will keep the same notation for the rest of the

paper.

Indices:

i used as subscript, denotes the number of considered

client of CDN,

j used as subscript, denotes the number of considered

arc or node,

r used as subscript, denotes the number of considered

selection of clients or routes,

k used as superscript, denotes the number of a route.

Sets:

V set of |V | vertices representing the network vertices

(nodes),

A set of |A| arcs representing directed links,

R set of |R| CDN’s content servers (replicas); each

server must be located in a network vertex,

P set of |P| CDN’s clients; each client is defined by

the source vertex si, destination vertex ti and band-

width requirement Qi; for each client a set of route

proposals is given,

Πi set of routes proposals for a client i; Πi = {πk
i : k =

= 1, . . . , |Πi|}; each route ends in the source node

of client i,
Zr set of location variables zi equal to one; the set Zr is

called a selection; each selection Zr determines the

unique assignment of replicas to network nodes,

Xr set of route selection variables xk
i equal to one; the

set Xr is called a selection; each selection Xr deter-

mines the unique set of routes between clients and

replicas.

Decision variables:

zi binary variable, which is equal to one if a replica is

located in the node i and is equal to zero otherwise,

xk
i binary variable, which is equal to one if the client i

uses the route πk
i and is otherwise equal to zero.

Other variables:

f jr flow in link j calculated according to routes defined

in selection Xr.

Constants:

c j capacity of arc j,
C(j) capacity of all arcs leaving the node j,
Qi bandwidth requirement for a client i,
Q(j) bandwidth requirement of all clients located at

node j,
ak

i j binary variable, which is equal to one if the jth arc

belongs the route πk
i and is otherwise equal to zero,

ui j binary variable that equals one if the source node of

the arc i is node j,
uk

i j binary variable that equals one if the source node of

the route πk
i is node j.

We assume that traffic between a replica and a set of

clients connected to one node can be aggregated to one

or more LSPs. Since clients receive more data than is sent

to replicas, we assume that traffic between clients and repli-

cas is generally asymmetric and we ignore the flow from

a client to a replica.

The optimization problem of replica location in a CDN is

formulated as follows:

min
Xr ,Zr

D(Xr, Zr) = ∑
j∈A

f jr (1)

subject to

f jr = ∑
i∈P

∑
πk

i ∈Πi

ak
i j xk

i Qi ∀ j ∈ A , (2)

∑
j∈V

z j = |R| , (3)

∑
πk

i ∈Πi

xk
i = 1 ∀i ∈ P , (4)

f jr ≤ c j ∀ j ∈ A , (5)

15

Krzysztof Walkowiak

∑
j∈V

∑
πk

i ∈Πi

xk
i y j uk

i j = 1 ∀i ∈ P , (6)

z j ∈ {0,1} ∀ j ∈V , (7)

xk
i ∈ {0,1} ∀i ∈ P; πk

i ∈ Πi . (8)

The objective function (1) is the overall flow in the CDN

generated by clients. Note that if we introduce a link metric

the objective function could represent cost, network latency

or other function. Equation (2) is a definition of a link

flow. Constraint (3) guarantees that the number of estab-

lished replicas (content servers) equals the defined number

of replicas. We assume that during the CDN design we

know how many replicas may be located. The number of

replicas can be calculated according to the budget of CDN.

The overall budget is divided by the cost of one content

server. Thus, we obtain the number of replicas that can

be afforded for the particular budget. Constraint (4) en-

sures that each client uses only one route. Constraint (5) is

a capacity constraint. Constraint (6) guarantees that each

selected route starts in a node that has a replica. Con-

straints (7) and (8) ensure that decision variables are binary

ones. The condition (8) ensures that the considered flow is

non-bifurcated as in MPLS networks. If we relax the con-

straint (8) to the formula given below, the flow becomes

a bifurcated multicommodity flow:

0 ≤ xk
i ≤ 1 ∀i ∈ P; πk

i ∈ Πi .

Thus, we obtain the replica location problem for protocols

using the bifurcated flow, for instance IP protocol.

Note, that in the problem Eqs. (1)–(8) we don’t limit the

amount of service that can be provided at any replica. Ac-

cording to [24], it is a reasonable assumption, since in-

creasing the number of replica sites is much more difficult

than increasing the capacity of a replica. The number of

replicas is frequently given a priori due to cost and ad-

ministrative reasons, while the capacity constraint can be

overcome by adding more machines. Since in many cases

the replication traffic and cost of replicas managing can be

ignored, we ignore the cost of replica location.

The problem Eqs. (1)–(8) is NP-complete because it has

more constraints then the non-bifurcated flow problem

which is NP-complete according to [13].

Joint optimization of replica location, clients’ assignment

and routes’ selection must be carried out to find a glob-

ally optimal solution of the objective function for a pro-

jected traffic demand. Since the optimization is conducted

jointly over location and route selection variables, the com-

plexity of the problem grows tremendously. An interesting

approach is to partition the problem into two simpler prob-

lems: first optimize replica location and next find clients’

assignment for already established replicas.

The first subproblem, called only replica location (ORL)

consists of selection of |R| nodes to host a replica. This

problem is very close to problem RL (1)–(8). However, we

don’t take into account assignment of clients to replicas.

Therefore, we can ignore constraints (2), (4)–(6) and (8).

As an objective function we use the function D(Zr) defined

as a solution of clients’ assignment to replicas given by the

selection Zr.

The second subproblem is to assign each client i to one

replica according to selected criterion. In the optimiza-

tion problem of clients’ assignment to replicas (CATR) we

assume that replicas are already located in network nodes

and the main goal is to assign clients to replicas minimiz-

ing the overall flow. The CATR optimization problem is

formulated as follows:

min
Xr

D(Xr) = ∑
j∈A

f jr (9)

subject to Eqs. (2), (4), (5) and (8).

The CATR problem is similar to the classical non-

bifurcated multicommodity flow problem (NBMC) exten-

sively discussed in the literature [7, 14, 33]. The main

difference is that in the CATR problem besides route se-

lection for each client we must decide on which replica the

client should be assigned to. It is an additional constraint.

Since the NBMC problem is NP-complete [13], the CATR

problem is also NP-complete.

To solve the ORL problem we must consider many CATR

subproblems. For each location of replicas, in order to

find the objective function, we must estimate the network

flow by assigning clients to already located replicas. For

this purpose exact or heuristic algorithms can be used.

If a heuristic algorithm treats at least one of ORL or CATR

subproblems, the obtained solution of the RL problem can-

not be called an optimal one. However, this approach can

reduce size of the problem and consequently shorten exe-

cution time of the algorithm.

5. Exact algorithm

Optimization of the Web replica placement is a difficult

task. In many real life cases, replicas or proxies are placed

in fairly obvious nodes, e.g., the Internet service provider

gateway [19]. However, in order to improve network param-

eters some algorithms must be applied to provide optimal

or sub-optimal solutions.

As mentioned above, the RL problem is NP-complete.

Therefore, heuristic algorithms not always ensure that the

solution is optimal. To obtain an optimal solution an ex-

act algorithm must be applied. To construct such an al-

gorithm we propose to use the branch-and-cut (B&C) ap-

proach, which is a modification of the branch-and-bound

method (B&B). The branch-and-bound approach has be-

come a general solution method for various integer and

mixed integer problems. The B&B algorithm is an in-

telligently structured search over the space of all feasible

solutions. The solution space is repeatedly partitioned into

smaller subsets, and a lower bound of the objective func-

tion is calculated within each subset. Subsets with bound

that exceeds the best solution are excluded from further

partitioning. For more information on branch-and-bound

algorithms refer to [20].

16

An exact algorithm for design of content delivery networks in MPLS environment

Branch-and-cut is a relatively new but well accepted

method proposed by Padberg and Rinaldi [22] for the trav-

eling salesman problem. B&C algorithm is a combina-

tion of cutting plane algorithm and branch-and-bound al-

gorithm. Cutting plane procedures are introduced into the

bounding phase of B&B, enabling the branching phase to

utilize the information on the known cuts, what improves

the relaxation of the problem and enables calculation of

more effective bounds. The B&C algorithm solves strength-

ened continuous relaxations of the problem, resulting in

fewer analyzed nodes than for the B&B algorithm. The

reader interested by branch-and-cut approach is referred

to [1, 9, 21, 22].

It must be underlined that in order to find the exact solu-

tion of RL we must solve both subproblems concurrently.

In this section we focus on the ORL problem and propose

a branch-and-cut algorithm to solve this problem. The algo-

rithm guarantees that we analyze the whole solution space

of all possible combinations of replica location. However,

for each analyzed selection Zr we must solve the CATR

subproblem. If we solve CATR by an exact algorithm, the

obtained solution is globally optimal. Otherwise, if we

tackle CATR with an heuristic algorithm, the solution can

be claimed to be optimal.

5.1. Calculation scheme

In our branch-and-cut algorithm we start with selection Z1
and generate a sequence of selections Zr. In order to obtain

the initial selection Z1 we can solve the RL problem using

one of heuristic algorithms proposed in [30, 31]. Each new

selection Zs is obtained from a certain selection Zr of the se-

quence by complementing a normal variable zi by a reverse

variable zk in the following way Zs := (Zr −{zi})∪{zk}.

It means that we shift the replica from node i to a node k.

The generating process can be represented as a branch and

bound decision tree. Each node of the decision tree repre-

sents a selection. We say that the selection Zs is a successor

of the selection Zr if there is a path from Zr to Zs.

For each set Zr we constantly fix a set of nodes Ur. The

state of nodes included in Ur cannot be changed. It means

that nodes included in the set Ur cannot be used in the

selection process. If the selection Zs is obtained from the

selection Zr as Zs := (Zr −{zi})∪{zk} we update the Us as

follows: Us := Ur ∪{i}. There are two key elements of the

branch-and-cut algorithm: lower bound of criterion func-

tion and branching rules. The lower bound is calculated to

check if a “better” solution may be found. If the test re-

sult is negative we abandon the considered selection Zr and

backtrack to the selection Zp from which the selection Zr
was generated. If Zr was obtained from the selection Zp
in the following way Zr := (Zp −{zi})∪ {zk} we update

the Up as follows: Up := Up ∪{i}. It is a consequence of

the fact that variables zi are binary ones; and if we ana-

lyze all selections for which zi = 0 we may constantly fix

node i with zi = 1. It must be noted that in branch-and-cut

algorithm the lower bound calculation is enriched with the

valid inequalities, which can “cut” the solution space.

The basic task of the branching rules is to find the vari-

ables for complementing to generate a new selection with

the lowest value of criterion function possible. Since in the

algorithm we change only location of replica, we use the

function D given by (1) as the objective function. How-

ever, in order to calculate value of this function we must

solve the CATR problem. During the branching operation

of the tree we add a node i without a replica (the cur-

rent variable zi = 0) to the set Ur. When we backtrack,

a node i hosting a replica is included in the set of fixed

nodes (the current variable zi = 1).

5.2. Branching rules

We define two sets as follows:

Er =





⋃

j∈(N−Ur)

{

j : z j = 0
}



 ,

Mr =





⋃

j∈(N−Ur)

{

j : z j = 1
}



 .

The set Er comprises all nodes that are not constantly fixed

for Zr and can be selected for complementing. The set Mr
includes all nodes that are not constantly fixed for Zr and

can be selected for removing a replica. Since, due to con-

dition (3) the number of replicas must be equal to |R|, in

the branching rule for a successor of Zr we must remove

a replica from a node hosting a replica, i.e., a node included

in the set Mr and locate this replica in a node incorporated

in the set Er.

In order to explain the branching rule we introduce a new

function di(Zr) defined as a distance from the node i to

the closest replica included in the selection Zr. To find the

di(Zr) we consider only routes from the set Πi. Using the

di(Zr) we define the following function:

G(Zr) = ∑
i∈P

Qi di(Zr) . (10)

The function G(Zr) is only an estimation of the D(Yr).
However, the main benefit of the function G(Yr) compared

to D(Yr) is that it can be easily calculated. Next, we in-

troduce the function swap(r, i,k) used for selection of the

variables for complementing. Without loss of generality,

we assume that the selection Zs is obtained from the se-

lection Zr in the following way Zs := (Zr −{zi})∪ {zk}.

According to the above discussion i ∈ Mr and k ∈ Er. The

function swap(r, j,k) is defined as follows:

swap(r, i,k) = G(Zs)−G(Zr) . (11)

According to definition (11), swap(r, i,k) is a “gain” we

obtain by moving the replica from the node i to the node k.

As mentioned above, the function G(Zr) used in the defi-

nition (11) is an estimate of the objective function D(Zr).
Since in the branching rule we want to generate a new

selection and minimize the objective function D(Zr), we

propose to use the function (11) as the decision function.

17

Krzysztof Walkowiak

5.3. Lower bound

The simplest way to calculate a lower bound of an opti-

mization problem is to relax some constraints in order to

obtain a much simpler optimization problem in terms of

computational complexity. In this case we relax the capac-

ity constraint (5). Therefore, clients can be assigned to the

closest node excluding nodes abandoned while generating

the decision tree (we don’t consider fixed nodes i ∈Ur for

which zi = 0).

Let Nr denote a set of fixed nodes i ∈Ur for which zi = 1:

Nr =

(

⋃

j∈Ur

{

j : z j = 1
}

)

.

For the current selection |Nr| replicas are constantly lo-

cated. It means that the number of replicas to be located

is (|R|− |Nr|). These replicas can be placed only in nodes

included in the set (V −Ur). Let Zr denote a set of feasible

selections that can be generated from the selection Zr. We

assume that the set Zr compromises also the selection Zr.

According to discussion presented above, the following for-

mula defines the number of elements of the set Zr:

|Zr| =

(

|V −Ur|
|R|− |Nr|

)

.

Now we introduce the cutting inequality. Let C(j) denote

the capacity of all arcs leaving the node j:

C(j) = ∑
i∈A

Qi ui j (12)

Recall that ui j is a binary variable that equals one if the

source node of the arc i is node j. Due to the capacity

constraint (5), a replica located in node j can serve at most

C(j) flow. Consequently, C(Zr) denotes the upper bound of

flow that can be served by replicas located in nodes given

by the selection Zr:

C(Zr) = ∑
j∈V

y jC(j) . (13)

The following formula is applied as a cutting plane in the

lower bound:

C(Zr) ≥ ∑
j∈V

(1− y j)Q(j) . (14)

The inequality (14) indicates whether or not the location

of replicas given in selection Zr can serve all demands in

the network. In the right-hand side we sum bandwidth

requirements of demands located in network nodes except

for nodes, where replicas are placed.

Let Ψr denote a set of selections Zr ∈ Zr for which the

inequality (14) is satisfied. Note that formula (10) defines

a lower bound of the objective function for Zr. In order to

find a lower bound for the selection Zr and all its successors

we apply the following formula:

LBr = min
Zr∈Ψr

G(Zr) . (15)

In formula (15) we analyze all feasible (in terms of the

cutting inequality and fixed variables) selections that can

be generated from current selection Zr. If inequality (14)

is satisfied, we calculate the function G(Zr) for considered

replica location. Otherwise, we skip the given selection.

Therefore, we perform fewer calculations of G(Zr). Since

to obtain the LB(Zr) we relax the capacity constraint of the

problem Eqs. (1)–(8), the LBr is a lower bound of the objec-

tive function for the selection Zr and all feasible selections

that can be generated from Zr. The elementary operation

of lower bound consists of checking the inequality (14) and

if it is satisfied, we must calculate G(Zr). Otherwise, when

the cut (14) fails, we don’t examine the given selection any

further. To find G(Zr) we must find the shortest route to

the replica for every client. Checking the cut (14) is much

simpler, since values of C(j) and Q(j) are constant.

Note that in classic B&B algorithm the following formula

can be used as lower bound:

LBr = min
Zr∈Zr

G(Zr) . (16)

In formula (16) we don’t use the cutting inequality. There-

fore, for every selection Zr ∈ Zr the value of function G(Zr)
must be found.

5.4. Algorithm

The problem RL (5–12) can be solved using the following

algorithm. Let Z1 denote a feasible initial solution. Set

U1 := ∅, D∗ :=∝. The current selection is denoted by Zr.

Let LBr be a lower bound of Zr given by (15). We start

with r := 1.

Step 1: Compute LBr (15). If LBr ≥ D∗ go to Step 4.

Otherwise if LBr < D∗ go to Step 2.

Step 2: Compute D(Zr). If there is a feasible solution

of D(Zr) and D(Zr) < D∗ then set D∗ := D(Zr). Go

to Step 3. Otherwise, if there is no feasible solution

of D(Zr) go to Step 4.

Step 3: If Er = ∅ or Mr = ∅ go to Step 4. Oth-

erwise find i ∈ Mr and k ∈ Er for which the value

of swap(r, i,k) is lowest. Generate the selection Zs
(successor of Zr) as follows Zs := (Zr −{zi})∪{zk},

Us := Ur ∪{i}. Go to Step 1.

Step 4: Backtrack to the predecessor Zp of the se-

lection Zr. If the Zr has no predecessor, stop the

algorithm. The selection Z∗ associated with the

current D∗ is the optimal solution. Otherwise, if

Zr has predecessor, drop the data for Zr and update

data for Zp as follows. If Zr has been generated as

Zr := (Zp −{zi})∪{zk} then set Up := Up ∪{i}. Go

to Step 1.

To obtain the value of function D(Zr) calculated in Step 2

we must solve the CATR problem for the particular location

of servers given by the selection Zr.

18

An exact algorithm for design of content delivery networks in MPLS environment

Fig. 1. Tested network.

6. Results

In this section we present results of numerical experi-

ments. The B&C algorithm proposed in previous section

was coded in C++. As mentioned above, there is a joint

dependency between the replica location and the assign-

ment of routes. Therefore, if a heuristic algorithm solves

the CATR subproblem, the solution of the RL problem ob-

tained cannot be called an optimal one. The CATR problem

is very complex, even for small networks. Therefore, we de-

cided to use a heuristic algorithm based on the flow devia-

tion method [7] to find feasible solutions of CATR in Step 2

of B&C algorithm. Obviously, the solution of RL problem

obtained cannot be called optimal. However, FD algorithm

is a very effective method for solving multicommodity flow

problems [4, 14, 33]. Consequently, the B&C is used as an

intelligent method of searching the solution space of replica

location problem.

Results presented in this section are obtained from simula-

tions on a sample networks having 36 nodes and 128 arcs

(Fig. 1). Arcs of tested network have various capacities in

the range from 2 000 BU (bandwidth units) to 6 000 BU.

In the experiment, it is assumed that in every network node

there are 5 demands to a CDN server (replica). It means

that there are overall 180 clients in the network. For a par-

ticular experiment bandwidth requirements are the same for

all clients.

We have considered 6 scenarios. In Cases A, B, C and D

there are 3 replicas to be located. The starting solutions in-

dicating nodes hosting replicas are {2,16,32}; {1,16,32};

{1,14,32}; {2,30,32} respectively for Cases A, B, C

and D. In experiment E there are 2 replicas to be lo-

cated and the initial solution is {14,25}. Finally, for

Case F, 4 replicas are to be placed and the starting solution

is {2,14,16,30}. Initial solutions are found heuristically.

We studied the performance of the algorithm for increasing

traffic load, examining the evolution of the network status

towards a saturation condition. In particular, for every sce-

nario we examine 26 demand patterns having the value of

one client’s demand between 200 BU and 450 BU.

The first objective of experiments was to investigate how

increasing replicas’ number changes the network overall

flow. In Fig. 2 we report performance of B&C algorithm

for Scenarios A, E and F for which the number of replicas

to be placed is 2, 3 and 4, respectively. The x-axis is the

total demand in the network (sum of all clients’ demands),

and the y-axis is the network flow (objective function of

the RL problem). It is obvious that increasing the num-

ber of replicas decreases the network flow. More replicas

means that a replica is closer to clients and the route to the

replica is shorter. In Scenario E (2 replicas) the algorithm

finds a feasible solution only for first 6 demand patterns.

For 3 replicas, 23 of 26 considered demand patterns yield

feasible result. Finally, for the last scenario having 4 CDN

servers all demand patterns are satisfied.

Fig. 2. Network flow as a function of total demand in the network

for various number of replicas.

Since the branch-and-cut approach is a relatively new

method compared to branch-and-bound algorithm, we made

several tests to evaluate performance of B&C against B&B.

19

Krzysztof Walkowiak

To obtain a B&B algorithm we slightly modified the algo-

rithm developed in previous section and applied the lower

bound given by (16). All other operations of the B&B

algorithm are the same as for B&C.

First, we show how the B&C algorithm reduces the num-

ber of nodes in the solution tree of the algorithm. Figure 3

plots the number of nodes in the solution tree for Scenar-

ios A and E as a function of total demand in the network.

We show results for both algorithms: B&B and B&C. The

x-axis is the total demand in the network. The y-axis uses

logarithmical scale and denotes the number of nodes in the

decision tree of the algorithm. We observe similar perfor-

mance between the bars, reflecting A and E scenarios. For

low load (according to the number of replicas), both algo-

rithms need the same number of nodes in the decision tree.

For more saturated network, B&C produces significantly

less nodes than the B&B. Similar trend can be observed

for other scenarios. Summarizing over all experiments,

B&B algorithm produces 26 186 nodes, while for B&C

the corresponding value is 19 958 nodes. The biggest dif-

ference is observed for highly saturated demand pattern in

Scenario C, for which B&C needs only 104 nodes com-

pared to 4 184 nodes of B&B. This proves that the branch-

and-cut algorithm is more effective then the B&B one. For

the problem considered, B&C outperforms B&B, especially

for large traffic load that leads to network saturation.

Fig. 3. Number of nodes in the solution tree for B&B and B&C

algorithms.

To confirm the advantage of B&C over B&C we present fur-

ther results. Recall that the main benefit of B&C algorithm

is the use of cutting inequality (14) that enables reduction

of calculations of function G(Zr) given by (10). Figure 4

shows the number of elementary operations performed in

B&C algorithm. There are two types of elementary opera-

tions. The first type is applied when the cut (14) is satis-

fied and calculation of the function G(Zr) given by (10) is

needed. The second operation consists only of checking the

cut inequality and it is used when the cut inequality doesn’t

hold. The x-axis is the total demand in the network, and the

y-axis denotes the number of operations. Figure 4 shows

present results for Scenarios A and D. Generally the trend

is the same for both cases. For low loaded networks the

number of cuts exceeds the number of function G calcula-

tions. However, for this experiments the number of decision

tree nodes is relatively small. For higher demand patterns

curves become stable, number of cuts is about 3 times lower

than number of the function G calculations. In these cases

the number of decision tree nodes grows, and the lower

bound is calculated for different selections and combina-

tions of fixed nodes. Similar trend was observed for other

scenarios.

Fig. 4. Number of elementary operations for B&C algorithm.

Recall that for B&B algorithm we don’t use the cutting

plane. This creates additional overhead. For each anal-

ysed selection in the lower bound we must calculate the

formula (10). Therefore, for the B&B algorithm the num-

ber of function G calculations is equal to or bigger than the

sum of all elementary operations (of both types) in B&C

algorithm.

Next, we present the execution time of B&C and B&C al-

gorithms. The program implementing both algorithms was

run on an IBM-compatible PC with 2 GHz Intel processor

and 512 MB of RAM. It is worth remarking that decision

time does not include I/O time for input of various files. It

includes only the time of design output. Figure 5 depicts

the decision time of both algorithms for Scenarios A and C.

Fig. 5. Execution time of B&B and B&C algorithms for Scenar-

ios A and C.

20

An exact algorithm for design of content delivery networks in MPLS environment

The x-axis is the total demand in the network. The y-axis

uses logarithmical scale and denotes the decision time in

seconds. We observe that B&C outperforms B&B for all

demand patterns considered. The gap is similar for dif-

ferent network loads. It is worth remarking that when the

network load grows, the execution time also increases.

Comparing Figs. 3 and 4 to Fig. 5 we can reach interest-

ing conclusions. Analysis of B&C and B&B decision times

obtained for various demand patterns shows only slight dif-

ferences. On the other hand, observation of decision nodes’

number and effectiveness of the cut inequality shows many

differences in performance for various total loads in the

network. For low loads the cut inequality works more ef-

fectively and gives relatively more positive tests. For more

saturated networks the B&C produces much less solution

tree nodes then B&B. Thus, these two effects combine to

yield similar performance of B&C and B&B in terms of

decision time for all considered demand patterns.

It should be noted that the decision time of B&B and B&C

algorithms is influenced strongly by the execution time of

the heuristic algorithm applied to solve the CATR subprob-

lem. It was observed that the execution time of heuristic

algorithm depends on the solved problem; the time is not

constant. Therefore, analysis of the exact algorithms’ deci-

sion time only from the perspective of decision tree nodes’

numbers or effectiveness of cut inequality is not always

sufficient.

Fig. 6. Execution time of B&C algorithm for Scenarios A, B, C,

and D.

Another important issue we have examined is the impact of

the starting solution on the performance of the B&C algo-

rithm. Figure 6 shows the decision time of B&C algorithm

for Scenarios A, B, C and D. Recall that all these cases

have 3 replicas to be located; however the initial solution

of each scenario is different. The x-axis is the total demand

in the network. The y-axis uses logarithmical scale and de-

notes the decision time in seconds. We observe very similar

performance for three bar series, reflecting Scenarios A, B

and D. For Case C the performance is much worse and the

decision time is about 16 times longer then for other cases.

This becomes evident when we analyse the quality of start-

ing solutions applied in individual scenarios. The starting

solution used in Scenario C gives an average result about

10% worse than the result obtained for B&C. The corre-

sponding difference is 1%, 7% and 5% for Scenarios A, B

and D, respectively. We can conclude that the starting so-

lution is an important issue in the B&C algorithm, which

has a strong effect on the execution time.

In summary, we must underline that experimental data

showing comparison of B&B and B&C methods is rea-

sonably well explained by the theoretical foundations of

both algorithms presented in previous section.

7. Conclusion

This paper deals with the problem of replica location

in a content delivery network. We have presented and

discussed basic information on CDNs and MPLS. We

have formulated an optimisation problem of replica loca-

tion in a CDN. The network flow has been modelled as

a connection-oriented flow. Furthermore, the capacity con-

straint has been incorporated into the model. This problem

is NP-complete. The objective function is the overall flow

in the network. To our knowledge, this problem has not

received much attention in the literature. Using optimisa-

tion model, an exact algorithm based on the branch and

cut approach has been developed. Two main operations

of the algorithm: lower bound and branching rule have

been discussed in detail. Results of numerical experiments

have been discussed. From both experimental and ana-

lytical viewpoints, we have concluded that when applied

to replicas location problem, the branch-and-cut algorithm

outperforms branch-and-bound method in terms of execu-

tion time and number of analysed nodes of the decision

tree. In future work we want to make more extensive tests

in order to evaluate this algorithm and compare it with other

algorithms.

References

[1] K. I. Aardal and C. P. M. van Hoesel, “Polyhedral techniques in

combinatorial optimization II: computations and applications”, Stat.

Nederl., vol. 53, pp. 129–178, 1999.

[2] V. Arya, N. Garg, R. Khandekar, A. Meyerson, and V. Pandit, “Lo-

cal search heuristics for k-median and facility location problems”,

in Proc. ACM Symp. Theory Comput., Hersonissos, Crete, Greece,

2001, pp. 21–29.

[3] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm,

“World wide Web caching: the application-level view of the Inter-

net”, IEEE Commun. Mag., pp. 170–178, June 1997.

[4] J. Burns, T. Ott, A. Krzesiński, and K. Muller, “Path selection and

bandwidth allocation in MPLS networks”, Perform. Eval., vol. 52,

pp. 133–152, 2003.

[5] M. Charikar and S. Guha, “Improved combinatorial algorithms for

the facility location and k-median problems”, in Proc. IEEE Symp.

Found. Comput. Sci., New York, USA, 1999, pp. 378–388.

[6] B. Davison, “The design and evaluation of Web prefetching and

caching techniques”, Ph.D. thesis, 2002,

http://www.cse.lehigh.edu/∼brian/pubs/2002/thesis/

[7] L. Fratta, M. Gerla, and L. Kleinrock, “The flow deviation method:

an approach to store-and-forward communication network design”,

Networks, vol. 3, pp. 97–133, 1973.

21

Krzysztof Walkowiak

[8] S. Guha, A. Meyerson, and K. Munagala, “Improved approximation

algorithms for fault-tolerant facility location”, in Proc. ACM-SIAM

Symp. Discr. Algor., Washington, USA, 2001, pp. 636–641.

[9] O. Gunluk, “Branch-and-cut algorithm for capacitated network de-

sign problems”, Math. Programm., vol. 86, pp. 17–39, 1999.

[10] K. Jain, M. Mahdin, and A. Saberi, “A new greedy approach for

facility location problems”, in Proc. ACM Symp. Theory Comput.,

Montreal, Canada, 2002.

[11] S. Jamin, Ch. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang, “On

the placement of Internet instrumentation”, in Proc. IEEE INFO-

COM 2000, Tel-Aviv, Israel, 2000, pp. 295–304.

[12] S. Jamin, Ch. Jin, Y. Jin, A. Kurc, D. Raz, and Y. Shavitt, “Con-

strained mirror placement on the Internet”, in Proc. IEEE INFO-

COM 2001, Anchorage, Alaska, USA, 2001, pp. 31–40.

[13] R. Karp, “On the computational complexity of combinatorical prob-

lems”, Networks, vol. 5, pp. 45–68, 1975.

[14] A. Kasprzak, Topological Design of Wide Area Networks. Wrocław:

Wrocław University of Technology Press, 2001.

[15] L. Kennington, “A survey of linear cost multicommodity networks

flows”, Oper. Res., vol. 26, pp. 209–236, 1978.

[16] B. Krishnamurthy, C. Wills, and Y. Zhang, “On the use and per-

formance of content delivery networks”, in Proc. ACM SIGCOMM

Internet Measur. Worksh., San Francisco, USA, 2001.

[17] P. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem”,

IEEE/ACM Trans. Netw., vol. 8, pp. 568–582, 2000.

[18] T. Li, “MPLS and the evolving Internet architecture”, IEEE Com-

mun. Mag., pp. 38–41, Dec. 1999.

[19] B. Li, M. Golin, G. Italiano, X. Deng, and K. Sohraby, “On the

optimal placement of Web proxies in the Internet”, in Proc. IEEE

INFOCOM’99, New York, USA, 1999, pp. 1282–1290.

[20] J. Mitchell and E. Lee, “Branch-and-bound methods for integer pro-

gramming”, in Handbook of Applied Optimization. Oxford: Oxford

University Press, 2002.

[21] J. Mitchell, “Branch-and-cut methods for combinatorial optimization

problems”, in Handbook of Applied Optimization. Oxford: Oxford

University Press, 2002.

[22] M. Padberg and G. Rinaldi, “Optimization of a 532-city traveling

salesman problem by branch-and-cut”, Oper. Res. Lett., vol. 6, 1987.

[23] G. Peng, “CDN: content distribution networks”, Tech. Rep., 2003,

http://www.sunysb.edu/tr/rpe13.ps.gz

[24] L. Qiu, V. Padmanabhan, and G. Voelker, “On the placement of

Web server replicas”, in Proc. IEEE INFOCOM 2001, Anchorage,

Alaska, USA, 2001, pp. 1587–1596.

[25] M. Rabinovich, “Issues in Web content replication”, Data Eng. Bull.,

vol. 21, no. 4, 1998.

[26] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label

switching architecture”, RFC 3031, Jan. 2001.

[27] A. Vakali, “An evolutionary scheme for Web replication and

caching”, in Proc. 4th Int. Web Cach. Worksh., San Diego, USA,

1999.

[28] K. Walkowiak, “Designing of survivable Web caching”, in Proc. 8th

Polish Teletraffic Symp., Zakopane, Poland, 2001, pp. 171–181.

[29] K. Walkowiak, “Modelling of Web server replication system in

MPLS networks”, in Proc. Inform. Syst. Model. ISM 2002, Roznov

pod Radhostem, Czech Republic, 2002, pp. 213–220.

[30] K. Walkowiak, “A new exact algorithm for Web replica location

problem in MPLS networks”, in Proc. Polish-Germany Teletraffic

Symp. PGTS 2002, Gdańsk, Poland, 2002, pp. 307–314.

[31] K. Walkowiak, “Some approaches to solve a Web replica location

problem in MPLS networks”, in Internet Technologies, Applications

and Societal Impact, W. Cellary and A. Iyengar, Eds. Boston [etc.]:

Kluwer, 2002, pp. 61–72.

[32] K. Walkowiak, “On application of genetic algorithms to replica loca-

tion problem”, in Proc. Comput. Recogn. Syst. KOSYR 2003, Milków,

Poland, 2003, pp. 445–450.

[33] K. Walkowiak, “A new approach to survivability of connection ori-

ented networks”, in Lectures Notes in Computer Science. Berlin,

Heidelberg: Springer-Verlag, 2003, vol. 2657, pp. 501–510.

[34] J. Wang, “A survey of Web caching schemes for the Internet”, ACM

Comput. Commun. Rev., pp. 36–46, Oct. 1999.

[35] B. Williams, “Transparent Web caching solutions”, in Proc. 3rd Int.

WWW Cach. Worksh.—TF-Cache Meet., Manchester, England, 1998.

[36] A. Wierzbicki, “Internet cache location and design of content de-

livery networks”, in Lectures Notes in Computer Science. Berlin,

Heidelberg: Springer-Verlag, 2002, vol. 2376, pp. 69–82.

Krzysztof Walkowiak was

born in Poland in 1973. He

received the M.Sc. and Ph.D.

degrees in computer science

from Wrocław University of

Technology in 1997 and 2000,

respectively. Since 2001 he has

been an Assistant Professor

at the Chair of Systems and

Computer Networks, Faculty

of Electronics, Wrocław Uni-

versity of Technology. His research interest is mainly

focused on optimization of connection-oriented networks,

survivability issues of ATM, MPLS, and application

of soft-optimization techniques for design of computer

networks, Web caching.

e-mail: Krzysztof.Walkowiak@pwr.wroc.pl

Chair of Systems and Computer Networks

Faculty of Electronics

Wrocław University of Technology

Wybrzeże Wyspiańskiego st 27

50-370 Wrocław, Poland

22

