PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evolution and recent advances in RF/microwave transistors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most applications for radio frequency/microwave (thereafter called RF) transistors had been military oriented in the early 1980s. Recently, this has been changed drastically due to the explosive growth of the markets for civil wireless communication systems. This paper gives an overview on the evolution, current status, and future trend of transistors used in RF electronic systems. Important background, development and major milestones leading to modern RF transistors are presented. The concept of heterostructure, a feature frequently used in RF transistors, is discussed. The different transistor types and their figures of merit are then addressed. Finally an outlook of expected future developments and applications of RF transistors is given.
Rocznik
Tom
Strony
99--105
Opis fizyczny
Bibliogr. 43 poz., tab., rys.
Twórcy
autor
  • School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32186, USA
  • Department of Electronics Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China
autor
  • Fachgebiet Festkörperelektronik, Technische Universität Ilmenau, P.O. Box 100565, 98684 Ilmenau, Germany
Bibliografia
  • [1] F. Schwierz and J. J. Liou, „Semiconductor devices for RF applications: evolution and current status", Microelectron. Reliab., vol. 41, pp. 145-168, 2001.
  • [2] F. Schwierz and J. J. Liou, Modern Microwave Transistors: Theory, Design, and Performance. Hoboken, New Jersey: Wiley, 2003.
  • [3] P. Greiling, „The historical development of GaAs FET digital IC technology", IEEE Trans. Microw. Theory Techn., vol. 32, pp. 1144-1156, 1984.
  • [4] K. Onodera, M. Tokumitsu, M. Tomizawa, and K. Asai, „Effects of neutral buried p-layer on high-frequency performance of GaAs MESFET's", IEEE Trans. Electron Dev., vol. 38, pp. 429-436, 1991.
  • [5] H. F. Cooke, „Microwave transistors: theory and design", Proc. IEEE, vol. 59, pp. 1163-1181, 1971.
  • [6] H. T. Yuan, W. V. McLevige, and H. D. Shih, „GaAs bipolar digital integrated circuits", in VLSI Electronics: Microstructure Science, N. G. Einspruch and W. R. Wisseman, Eds. Orlando: Academic-Press, 1985, vol. 11, pp. 173-213.
  • [7] C. A. Mead, „Schottky barrier gate field effect transistor", Proc. IEEE, vol. 59, pp. 307-308, 1966.
  • [8] W. W. Hooper and W. I. Lehrer, „An epitaxial GaAs field-effect transistor", Proc. IEEE, vol. 55, pp. 1237-1238, 1967.
  • [9] K. Drangeid, R. Sommerhalder, and W. Lehrer, „High-speed gallium-arsenide Schottky-barrier field-effect transistors", Electron. Lett., vol. 6, pp. 228-229, 1970.
  • [10] W. Baechtold, K. Daetwyler, T. Forster, T. O. Mohr, W. Walter, and P. Wolf, „Si and GaAs 0.5 mm gate Schottky-barrier field-effect transistors", Electron. Lett., vol. 9, pp. 232-234, 1973.
  • [11] R. Dingle, H. L. Störmer, A. C. Gossard, and W. Wiegman, „Electron mobilities in modulation-doped semiconductor heterojunction superlattices", Appl. Phys. Lett., vol. 33, pp. 665-668, 1978.
  • [12] R. Dingle, A. C. Gossard, and H. L. Stormer, U.S. patent 4,163,237, filed Apr. 24, 1978, issued July 31, 1979.
  • [13] T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, „A new field-effect transistor with selectively doped GaAs/n-AlxGa1-xAs heterojunctions", Jpn. J. Appl. Phys., vol. 19, pp. L225-L227, 1980.
  • [14] F. Schwierz, „Microwave transistors: state of the art in the 1980s, 1990s, and 2000s" (unpublished).
  • [15] W. Shockley, U.S. patent 2,569,347, _led June 26, 1948, issued Sept. 25, 1951.
  • [16] Q. Lee, B. Agarwal, D. Mensa, R. Pullela, J. Guthrie, L. Samoska, and M. J. W. Rodwell, „A > 400 GHz fmax transferred-substrate heterojunction bipolar transistor IC technology", IEEE Electron Dev. Lett., vol. 19, pp. 77-79, 1998.
  • [17] M. J. W. Rodwell, M. Urteaga, T. Mathew, D. Scott, D. Mensa, Q. Lee, J. Guthrie, Y. Betser, S. C. Martin, R. P. Smith, S. Jaganathan, S. Krishnan, S. I. Long, R. Pullela, B. Agarwal, U. Bhattacharya, L. Samoska, and M. Dahlstrom, „Submicron scaling of HBTs", in IEEE Trans. Electron Dev., vol. 48, pp. 2606-2624, 2001.
  • [18] S. S. Iyer, G. L. Patton, S. L. Delage, S. Tiwari, and J. M. C. Storck, „Silicon-germanium base heterojunction bipolar transistors by molecular beam epitaxy", in Tech. Dig. IEDM, Washington, 1987, pp. 874-877.
  • [19] W. E. Hoke, P. J. Lemonias, J. J. Mosca, P. S. Lyman, A. Torabi, P. F. Marsh, R. A. McTaggart, S. M. Lardizabad, and K. Helzar, „Molecular beam epitaxial growth and device performance of metamorphic high electron mobility transistor structures fabricated on GaAs substrates", in J. Vac. Sci. Technol., vol. B17, pp. 1131-1135, 1999.
  • [20] K. Tokumitsu, M. Hirano, T. Otsuji, S. Yamaguchi, and K. Yamasaki, „A 0.1-mm self-aligned-gate GaAs MESFET with multilayer interconnection structure for ultra-high-speed IC's", in Tech. Dig. IEDM, San Francisco, 1996, pp. 211-214.
  • [21] D. C. Caruth, R. L. Shimon, M. S. Heins, H. Hsia, Z. Tang, S. C. Chen, D. Becher, J. J. Huang, and M. Feng, „Low-cost 38 and 77 GHz CPW MMICS using ion-implanted GaAs MESFETs", in IEEE MTT-S Dig., Boston, 2000, pp. 995-998.
  • [22] A. N. Lepore, H. M. Levy, R. C. Tiberio, P. J. Tasker, H. Lee, E. D. Wolf, L. F. Eastman, and E. Kohn, „0.1 mm gate length MODFETs with unity current gain cutoff frequency above 110 GHz", Electron. Lett., vol. 24, pp. 364-366, 1988.
  • [23] I. Hanyu, S. Asai, M. Nukokawa, K. Joshin, Y. Hirachi, S. Ohmura, Y. Aoki, and T. Aigo, „Super low-noise HEMTs with a T-shaped WSix gate", Electron. Lett., vol. 24, pp. 1327-1328, 1988.
  • [24] L. D. Nguyen, P. J. Tasker, D. C. Radulescu, and L. F. Eastman, „Characterization of ultra-high-speed pseudomorphic AlGaAs/InGaAs (on GaAs) MODFETs", IEEE Trans. Electron Dev., vol. 36, pp. 2243-2248, 1989.
  • [25] K. L. Tan, R. M. Dia, D. C. Streit, T. Liu, T. Q. Trinh, A. C. Han, P. H. Liu, P.-M. D. Chow, and H.-C. Yun, „94-GHz 0.1-mm T-gate low-noise pseudomorphic InGaAs HEMT's", IEEE Electron Dev. Lett., vol. 11, pp. 585-587, 1990.
  • [26] Y. Yamashita, A. Endoh, K. Shinohara, K. Hikosaka, T. Matsui, S. Hiyamizu, and T. Mimura, „Pseudomorphic In0:52Al0:48As/In0:7Ga0:3As HEMTs with an ultrahigh fT of 562 GHz", IEEE Electron Dev. Lett., vol. 23, pp. 573-575, 2002.
  • [27] P. M. Smith, S.-M. J. Liu, M.-Y. Kao, P. Ho, S. C. Wang, K. H. G. Duh, S. T. Fu, and P. C. Chao, „W-band high efficiency InP-based power HEMT with 600 GHz fmax", IEEE Microw. Guid. Wave Lett., vol. 5, pp. 230-232, 1995.
  • [28] S. T. Allen, R. A. Sadler, T. S. Alcorn, J. Sumakeris, R. C. Glass, C. H. Carter Jr., and J. W. Palmour, „Silicon carbide MESFET's for high-power S-band applications", Mat. Sci. Forum, vol. 264-268, pp. 953-956, 1998.
  • [29] V. Kumar, W. Lu, R. Schwindt, A. Kuliev, G. Simin, J. Yang, M. A. Khan, and I. Adesida, „AlGaN/GaN HEMTs on SiC with fT of over 120 GHz", IEEE Electron Dev. Lett., vol. 23, pp. 455-457, 2002.
  • [30] R. Quay, R. Kiefer, F. van Raay, H. Massler, S. Ramberger, S. Müller, M. Dammann, M. Mikulla, M. Schlechtweg, and G. Weimann, „AlGaN/GaN HEMTs on SiC operating at 40 GHz", in Tech. Dig. IEDM, San Francisco, 2002, pp. 673-676.
  • [31] H. S. Momose, E. Morifuji, T. Yoshimoto, T. Ohguro, M. Saito, and H. Iwai, „Cutoff frequency and propagation delay time of 1.5-nm gate oxide CMOS", IEEE Trans. Electron Dev., vol. 48, pp. 1165-1174, 2001.
  • [32] S. Narashima, A. Ajmera, H. Park, D. Schepis, N. Zamdmer, K. A. Jenkins, J.-O. Plouchart, W.-H. Lee, J. Mezzapelle, J. Bruley, B. Doris, J. W. Sleight, S. K. Fung, S. H. Ku, A. C. Mocuta,
  • I. Yang, P. V. Gilbert, K. P. Muller, P. Agnello, and J. Welser, „High performance sub-40 nm CMOS devices for the 70 nm technology node", in Tech. Dig. IEDM, Washington, 2001, pp. 625-628.
  • [33] J.-S. Rieh, B. Jagannathan, H. Chen, K. T. Schonenberg, D. Angell, A. Chinthakindi, J. Florkey, F. Golan, D. Greenberg, S.-J. Jeng, M. Khater, F. Pagette, C. Schnabel, P. Smith, A. Stricker, K. Vaed, R. Volant, D. Ahlgreen, G. Freeman, K. Stein, and S. Subbanna, „SiGe HBTs with cut-off frequency of 350 GHz", in Tech. Dig. IEDM, San Francisco, 2002, pp. 771-774.
  • [34] B. Jagannathan, M. Meghelli, K. Chan, J.-S. Rieh, K. Schonenberg, D. Ahlgreen, S. Subbanna, and G. Freeman, „3.9 ps SiGe HBT ECL ring oscillator and transistor design for minimum gate delay", IEEE Electron Dev. Lett., vol. 24, pp. 324-326, 2003.
  • [35] T. Oka, K. Hirata, K. Ouchi, H. Uchiyama, T. Taniguchi, K. Mochizuki, and T. Nakamura, „Advanced performance of small-scaled InGaP/GaAs HBT's with fT over 150 GHz and fmax over 250 GHz", in Tech. Dig. IEDM, San Francisco, 1998, pp. 653-656.
  • [36] W. J. Ho, N. L. Wang, M. F. Chang, A. Sailer, and J. A. Higgins, „Self-aligned, emitter-edge-passivated AlGaAs/GaAs heterojunction bipolar transistors with extrapolated maximum oscillation frequency of 350 GHz", IEEE Trans. Electron Dev., vol. 39, p. 2655, 1992.
  • [37] W. Hafez, J.-W. Lai, and M. Feng, „Submicron InP-InGaAs single heterojunction bipolar transistors with fT of 377 GHz", IEEE Electron Dev. Lett., vol. 24, pp. 292-294, 2003.
  • [38] D. Yu, K. Lee, B. Kim, D. Ontiveros, K. Vargason, J. M. Kuo, and Y. C. Kao, „Ultra high-speed InP-InGaAs SHBTs with fmax of 478 GHz", IEEE Electron Dev. Lett., vol. 24, pp. 384-386, 2003.
  • [39] Y. Betser, D. Scott, D. Mensa, S. Jaganathan, T. Mathew, and M. J. Rodwell, „InAlAs/InGaAs HBTs with simultaneously high values of fT and fmax for mixed analog/digital applications", IEEE Electron Dev. Lett., vol. 22, pp. 56-58, 2001.
  • [40] K. H. G. Duh, „A super low-noise 0.1 mm T-gate InAlAs-InGaAs-InP HEMT", IEEE Microw. Guid. Wave Lett., vol. 1, pp. 114-116, 1991.
  • [41] J. H. Lee, H.-S. Yoon, B.-S. Park, S.-J. Maeng, C.-W. Lee, H.-T. Choi, C.-E Yun, and C.-S. Park, „Noise performance of pseudomorphic AlGaAs/InGaAs/GaAs high electron mobility transistors with wide head T-shaped gate recessed by electron cyclotron resonance plasma etching", Jpn. J. Appl. Phys., vol. 38, pp. 654-657, 1999.
  • [42] B. Bayraktaroglu, J. Barette, L. Kehias, C. I. Huang, R. Fitch, R. Neidhard, and R. Scherer, „Very high-power-density CW operation of GaAs/AlGaAs microwave heterojunction bipolar transistors", IEEE Electron Dev. Lett., vol. 14, pp. 493-495, 1993.
  • [43] J. R. Shealy, V. Kaper, V. Tilak, T. Prunty, J. A. Smart, B. Green, and L. F. Eastman, „An AlGaN/GaN high-electron-mobility transistor with an AlN sub-bufier layer", J. Phys.: Condens. Matter, vol. 14, pp. 3499-3509, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0027-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.