PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Ultrathin oxynitride films for CMOS technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a review of possible methods of oxynitride film formation will be given. These are different combinations of methods applying high-temperature oxidation and nitridation, as well as ion implantation and deposition techniques. The layers obtained using these methods differ, among other aspects in: nitrogen content, its profile across the ultrathin layer,... etc., which have considerable impact on device properties, such as leakage current, channel mobility, device stability and its reliability. Unlike high-temperature processes, which (understood as a single process step) usually do not allow the control of the nitrogen content at the silicon-oxynitride layer interface, different types of deposition techniques allow certain freedom in this respect. However, deposition techniques have been believed for many years not to be suitable for such a responsible task as the formation of gate dielectrics in MOS devices. Nowadays, this belief seems unjustified. On the contrary, these methods often allow the formation of the layers not only with a uniquely high content of nitrogen but also a very unusual nitrogen profile, both at exceptionally low temperatures. This advantage is invaluable in the times of tight restrictions imposed on the thermal budget (especially for high performance devices). Certain specific features of these methods also allow unique solutions in certain technologies (leading to simplifications of the manufacturing process and/or higher performance and reliability), such as dual gate technology for system-on-chip (SOC) manufacturing.
Rocznik
Tom
Strony
62--69
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa st 75, 00-662 Warsaw
  • Museum of Earth, Polish Academy of Sciences, Al. na Skarpie 20/26, 00-488 Warsaw, Poland
Bibliografia
  • [1] C. M. Osburn et al., „Vertically scaled MOSFET gate stacks and junctions: how far are we likely to go?", IBM J. Res. Develop., vol. 46, no. 2-3, pp. 299-315, 2002.
  • [2] M. Bhat et al., „Electrical properties and reliability of MOSFET's with rapid thermal NO-nitrided SiO2 gate dielectrics", IEEE Trans. Electron Dev., vol. 42, no. 5, pp. 907-914, 1995.
  • [3] W. L. Hill et al., „Low-pressure rapid thermal chemical vapor deposition of oxynitride gate dielectrics for n-channel and p-channel MOSFETs", IEEE Trans. Electron Dev., vol. 43, no. 1, pp. 15-22, 1996.
  • [4] D. Wristers et al., „Degradation of oxynitride gate dielectric reliability due to boron diffusion", Appl. Phys. Lett., vol. 68, no. 15, pp. 2094-2096, 1996.
  • [5] D. Bouvet et al., „Influence of nitrogen profile on electrical characteristics of furnace - or rapid thermally nitrided silicon dioxide films", J. Appl. Phys., vol. 79, no. 9, pp. 7114-7122, 1996.
  • [6] I. J. R. Baumvol, „Atomic transport during growth of ultrathin dielectrics on silicon", Surf. Sci. Rep., vol. 36, no. 1-8, pp. 5-166, 1999.
  • [7] M. L. Green et al., „Ultrathin (<4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: understanding the processing, structure, and physical and electrical limits", J. Appl. Phys., vol. 90, no. 5, pp. 2057-2121, 2001.
  • [8] P. Berruyer and M. Bruel, „Nitrogen implantation for local inhibition of oxidation", Appl. Phys. Lett., vol. 50, no. 2, pp. 89-91, 1987.
  • [9] N. In-Ho et al., „Nitrogen profile effects on the growth rate of gate oxides grown on nitrogen-implanted silicon", J. Vac. Sci. Technol. B, vol. 19, no. 1, pp. 299-304, 2001.
  • [10] C. H. Lee and D. L. Kwong, „Multiple gate oxide technology using nitrogen implantation and high-pressure O2 oxidation", Semicond. Sci. Technol., vol. 18, no. 2, pp. 88-91, 2003.
  • [11] I. J. R. Baumvol et al., „Ultrathin silicon oxynitride film formation by plasma immersion nitrogen implantation", Appl. Phys. Lett., vol. 74, no. 6, pp. 806-808, 1999.
  • [12] T. Seino, T. Matsuura, and J. Murota, „Contribution of radicals and ions in atomic-order plasma nitridation of Si", Appl. Phys. Lett., vol. 76, no. 3, pp. 342-344, 2000.
  • [13] T. Bieniek et al., „Ultra shallow nitrogen plasma implantation for ultrathin silicon oxynitride (SiOxNy) layers formation", in 6th Symp. Diagn. Yield - Adv. Silic. Dev. Technol. ULSI Era, Warsaw, Poland, 2003.
  • [14] A. Raveh, J. Brewer, and E. A. Irene, „Nitridation of thermal SiO2 films by radiofrequency plasma assisted electron cyclotron resonance: layer structure and composition", J. Vac. Sci. Technol. A - Vac. Surf. Films, vol. 19, no. 1, pp. 17-24, 2001.
  • [15] G. Lucovsky, „Ultrathin nitrided gate dielectrics: plasma processing chemical characterisation, performance, and reliability", IBM J. Res. Develop., vol. 43, no. 3 pp. 301-326, 1999.
  • [16] A. Khandelwal, B. C. Smith, and H. H. Lamb, „Nitrogen incorporation in ultrathin gate dielectrics: a comparison of He/N2O and He/N2 remote plasma processes", J. Appl. Phys., vol. 90, no. 6, pp. 3100-3108, 2001.
  • [17] A. Khandelwal et al., „Low-temperature Ar/N/sub 2/ remote plasma nitridation of SiO2 thin films", J. Vac. Sci. Technol. A - Vac. Surf. Films, vol. 20, no. 6, pp. 1989-1996, 2002.
  • [18] R. B. Beck et al., „PECVD formation of ultrathin silicon nitride layers for CMOS technology", Vacuum (Surf. Eng., Surf. Instrum. Vac. Technol.), vol. 70, pp. 323-329, 2003.
  • [19] R. B. Beck et al., „Electrophysical properties of formed by PECVD ultrathin (< 6:0 nm) silicon nitride layers", in 6th Symp. Diagn. Yield - Adv. Silic. Dev. Technol. ULSI Era, Warsaw, Poland, 2003.
  • [20] R. B. Beck et al., „Very thin (< 10 nm) silicon oxynitride (SiOxNy) layers fromed by PECVD", in Electrochem. Soc. Meet. - Chem. Vap. Deposit. XVI & Symp. EUROCVD-14, Paris, France, 2003.
  • [21] R. B. Beck et al., „Thermal stability of formed by PECVD ultrathin (< 6:0 nm) silicon oxynitride layers determined by optical and electrical measurements", in 6th Symp. Diagn. Yield - Adv. Silic. Dev. Technol. ULSI Era, Warsaw, Poland, 2003.
  • [22] P. Hoffmann et al., „Photoemission studies of very thin (< 10 nm) silicon oxynitride (SiOxNy) layers formed by PECVD", in Proc. E-MRS, Warsaw, Poland, 2003.
  • [23] Q. D. M. Khosru et al., „High-quality NH/sub 3/-annealed atomic layer deposited Si-nitride/SiO2 stack gate dielectrics for sub-100 nm technology generations", Elsev. Solid State Electron., vol. 46, no. 10, pp. 1659-1664, 2002.
  • [24] A. Nakajima et al., „NH3-annealed atomic-layer-deposited silicon nitride as a high-k gate dielectric with high reliability", Appl. Phys. Lett., vol. 80, no. 7, pp. 1252-1254, 2002.
  • [25] T. P. Ma, „Gate dielectric properties of silicon nitride films formed by jet vapor deposition", Elsev. Appl. Surf. Sci., vol. 117-118, pp. 259-267, 1997.
  • [26] M. L. Green et al., „Rapid thermal oxidation of silicon in N2O between 800 and 1200 degrees C: incorporated nitrogen and interfacial roughness", Appl. Phys. Lett., vol. 65, no. 7, pp. 848-850, 1994.
  • [27] M. L. Green et al., „Ultrathin SiOxNy by rapid thermal heating of silicon in N2 at T =760-1050 degrees C", Appl. Phys. Lett., vol. 71, no. 20, pp. 2978-2980, 1997.
  • [28] R. B. Beck et al., „Low temperature plasma oxidation of silicon - possibility of application in CMOS-ULSI technology", in Conf. Plasma Chem., Kazimierz Dolny, Poland, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0027-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.