PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Critical modeling issues of SiGe semiconductor devices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present the state-of-the-art in simulation of silicon-germanium (SiGe) semiconductor devices. The work includes a detailed comparison of device simulators and current transport models. Among the critical modeling issues addressed in the paper, special attention is focused on the description of the anisotropic majority/minority electron mobility in strained SiGe grown on Si. We use a direct approach to obtain scattering parameters (S-parameters) and other derived figures of merit of SiGe heterojunction bipolar transistors (HBTs) by means of small-signal AC-analysis. Results from two-dimensional hydrodynamic simulations of SiGe HBTs are presented in good agreement with measured data. The examples are chosen to demonstrate technologically important issues which can be addressed and solved by device simulation.
Rocznik
Tom
Strony
15--25
Opis fizyczny
Bibliogr. 52 poz., tab., rys.
Twórcy
  • Institute for Microelectronics, TU Vienna, Gusshausstr. 27-29, A-1040 Vienna, Austria
  • Institute for Microelectronics, TU Vienna, Gusshausstr. 27-29, A-1040 Vienna, Austria
Bibliografia
  • [1] J. Böck, H. Schäfer, H. Knapp, D. Zöschg, K. Aufinger, M. Wurzer, S. Boguth, M. Rest, R. Schreiter, R. Stengl, and T. Meister, „Sub 5 ps SiGe bipolar technology", IEDM Tech. Dig., pp. 763-766, 2002.
  • [2] J.-S. Rieh, B. Jagannathan, H. Chen, K. Schonenberg, D. Angell, A. Chinthakindi, J. Florkey, F. Golan, D. Greenberg, S.-J. Jeng, M. Khater, F. Pagette, C. Schnabel, P. Smith, A. Stricker, K. Volant, D. Ahlgren, G. Freeman, K. Stein, and S. Subbanna, „SiGe HBTs with cut-off frequency near 300 GHz", IEDM Tech. Dig., pp. 771-774, 2002.
  • [3] B. Jagannathan, M. Meghelli, A. V. Rylyakov, R. A. Groves, A. K. Chinthakindi, C. M. Schnabel, D. A. Ahlgren, G. G. Freemann, K. J. Stein, and S. Subbanna, „A 4.2-ps ECL ring-oscillator in a 285 GHz fmax SiGe technology", IEEE Electron Dev. Lett., vol. 23, no. 9, pp. 541-543, 2002.
  • [4] T. Hashimoto, Y. Nonaka, T. Saito, K. Sasahara, T. Tominari, K. Sakai, K. Tokunaga, T. Fujiwara, S. Wada, T. Udo, T. Jinbo, K. Washio, and H. Hosoe, „Integration of a 0.13-mm CMOS and a high performance self-aligned SiGe HBT featuring low base resistance", IEDM Tech. Dig., pp. 779-782, 2002.
  • [5] APSYS, http://www.crosslight.com/downloads/downloads.html
  • [6] ATLAS/Blaze, http://www.silvaco.com/products/vwf/atlas/
  • [7] BIPOLE3, http://www.bipsim.com/mainframe.html
  • [8] DESSIS and DIOS, http://www.ise.com/products/index.html
  • [9] G-PISCES-2B, http://www.gateway-modeling.com/products.htm
  • [10] MEDICI, www.synopsys.com/products/avmrg/device_sim_ds.html
  • [11] E. Buturla, P. Cottrell, B. Grossman, and K. Salsburg, „Finiteelement analysis of semiconductor devices: the FIELDAY program," http://www.research.ibm.com/journal/rd/441/buturla.pdf
  • [12] NEMO, http://www.cfdrc.com/nemo/
  • [13] PISCES-ET, http://www-tcad.stanford.edu/tcad.html
  • [14] FLOODS and FLOOPS, http://www.tec.u.edu/ ooxs/
  • [15] C. Jungemann, B. Neinhüs, and B. Meinerzhagen, „Full-band Monte Carlo device simulation of a SiGe/Si HBT with a realistic Ge profile", IEICE Trans. Electron., vol. E83-C, no. 8, pp. 1228-1234, 2000.
  • [16] DEVICE, http://www.uv.ruhr-uni-bochum.de/
  • [17] nextnano3, http://www.webplexity.de/nextnano3.php
  • [18] J. Geßner, F. Schwierz, H. Mau, D. Nuernbergk, M. Roßberg, and D. Schipanski, „Simulation of the frequency limits of SiGe HBTs", in Proc. Model. Simul. Microsyst., Puerto Rico, 1999, pp. 407-410.
  • [19] Minimos-NT 2.0 User's Guide, Institut für Mikroelektronik, Technische Universität Wien, Austria, http://www.iue.tuwien.ac.at/software/minimos-nt
  • [20] S. Selberherr, Analysis and Simulation of Semiconductor Devices. Wien, New York: Springer, 1984.
  • [21] W. Hänsch, The Drift Diffusion Equation and its Application in MOSFET Modeling. Wien, New York: Springer, 1991.
  • [22] C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation. Wien, New York: Springer, 1989.
  • [23] K. Hess, Ed., Monte Carlo Device Simulation: Full Band and Beyond. Boston, Dordrecht, London: Kluwer, 1991.
  • [24] H. Kosina and S. Selberherr, „A hybrid device simulator that combines Monte Carlo and drift-diffusion analysis", IEEE Trans. Comput. Aid. Des., vol. 13, no. 2, pp. 201-210, 1994.
  • [25] W. Engl, A. Emunds, B. Meinerzhagen, H. Peifer, and T. Thoma, „Bridging the gap between the hydrodynamic and the Monte Carlo model - an attempt", in Proc. VLSI Process./Dev. Model. Worksh., Osaka, 1989, pp. 32-33.
  • [26] S. Laux and M. Fischetti, „The DAMOCLES Monte Carlo device simulation program", in Computational Electronics, K. Hess, J. Leburton, and U. Ravaioli, Eds. Kluwer, 1991, pp. 87-92.
  • [27] W. Hänsch, T. Vogelsang, R. Kircher, and M. Orlowski, „Carrier transport near the Si/SiO2 interface of a MOSFET", Solid State Electron., vol. 32, no. 10, pp. 839-849, 1989.
  • [28] K. Dragosits, V. Palankovski, and S. Selberherr, „Two-dimensional modeling of quantum mechanical effects in ultra-short CMOS devices", in Advances in Simulation, Systems Theory and Systems Engineering, N. Mastorakis, V. Kluev, and D. Koruga, Eds. WSEAS Press, 2002, pp. 113-116.
  • [29] D. Richey, J. Cressler, and A. Joseph, „Scaling issues and Ge profile optimization in advanced UHV/CVD SiGe HBT's", IEEE Trans. Electron Dev., vol. 44, no. 3, pp. 431-440, 1997.
  • [30] B. Gonzales, V. Palankovski, H. Kosina, A. Hernandez, and S. Selberherr, „An energy relaxation time model for device simulation", Solid State Electron., vol. 43, pp. 1791-1795, 1999.
  • [31] R. Quay, C. Moglestue, V. Palankovski, and S. Selberherr, „A temperature dependent model for the saturation velocity in semiconductor materials", Mat. Sci. Semicond. Process., vol. 3, no. 1-2, pp. 149-155, 2000.
  • [32] V. Palankovski and S. Selberherr, „Thermal models for semiconductor device simulation", in Proc. Eur. Conf. High Temper. Electron., Berlin, 1999, pp. 25-28.
  • [33] R. Quay, R. Reuter, V. Palankovski, and S. Selberherr, „S-parameter simulation of RF-HEMTs", in Proc. High Perform. Electron Dev. Microw. Opt. Appl. EDMO, Manchester, 1998, pp. 13-18.
  • [34] S. Wagner, V. Palankovski, T. Grasser, R. Schultheis, and S. Selberherr, „Small-signal analysis and direct S-parameter extraction", in Proc. Int. Symp. Electron Dev. Microw. Opt. Appl. EDMO, Manchester, 2002, pp. 50-55.
  • [35] J. Eberhardt and E. Kasper, „Bandgap narrowing in strained SiGe on the basis of electrical measurements on Si/SiGe/Si hetero bipolar transistors", Mat. Sci. Eng., vol. B89, pp. 93-96, 2002.
  • [36] Y. Varshni, „Temperature dependence of the energy gap in semiconductors", Physica, vol. 34, pp. 149-154, 1967.
  • [37] S. Jain, Germanium-Silicon Strained Layers and Heterostructures, vol. 24 of Advances in Electronics and Electron Physics. Academic Press, 1994.
  • [38] V. Palankovski, G. Kaiblinger-Grujin, and S. Selberherr, „Implications of dopant-dependent low-field mobility and band gap narrowing on the bipolar device performance", J. Phys. IV, vol. 8, pp. 91-94, 1998.
  • [39] S. Jain and D. Roulston, „A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1-x strained layers", Solid State Electron., vol. 34, no. 5, pp. 453-465, 1991.
  • [40] Ž. Matutinovič-Krstelj, V. Venkataraman, E. Prinz, J. Sturm, and C. W. Magee, „A comprehensive study of lateral and vertical current transport in Si/Si1-xGex/Si HBT's", IEDM Tech. Dig., pp. 87-90, 1993.
  • [41] M. Libezny, S. Jain, J. Poortmans, M. Caymax, J. Nijs, R. Mertens, K. Werner, and P. Balk, „Photoluminiscence determination of the Fermi energy in heavily doped strained Si1-xGex layers", Appl. Phys. Lett., vol. 64, no. 15, pp. 1953-1955, 1994.
  • [42] G. Masetti, M. Severi, and S. Solmi, „Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus- and borondoped silicon", IEEE Trans. Electron Dev., vol. ED-30, no. 7, pp. 764-769, 1983.
  • [43] K. Wolfstirn, „Hole and electron mobilities in doped silicon from radiochemical and conductivity measurements", J. Phys. Chem. Solids, vol. 16, pp. 279-284, 1960.
  • [44] S. E. Swirhun, D. E. Kane, and R. M. Swanson, „Measurements of electron lifetime, electron mobility and band-gap narrowing in heavily doped p-type silicon", IEDM Tech. Dig., pp. 24-27, 1986.
  • [45] I. Y. Leu and A. Neugroschel, „Minority-carrier transport parameters in heavily doped p-type silicon at 296 and 77 K", IEEE Trans. Electron Dev., vol. 40, no. 10, pp. 1872-1875, 1993.
  • [46] S. Smirnov, H. Kosina, and S. Selberherr, „Investigation of the electron mobility in strained Si1-xGex at high Ge composition", in Proc. Simul. Semicond. Process. Dev., pp. 29-32, 2002.
  • [47] H. Kosina and G. Kaiblinger-Grujin, „Ionized-impurity scattering of majority electrons in silicon", Solid State Electron., vol. 42, no. 3, pp. 331-338, 1998.
  • [48] A. Hössinger and S. Selberherr, „Accurate three-dimensional simulation of damage caused by ion implantation", in Proc. Model. Simul. Microsyst., Puerto Rico, 1999, pp. 363-366.
  • [49] S. Selberherr, W. Hänsch, M. Seavey, and J. Slotboom, „The evolution of the MINIMOS mobility model", Solid State Electron., vol. 33, no. 11, pp. 1425-1436, 1990.
  • [50] T. Grasser, R. Strasser, M. Knaipp, K. Tsuneno, H. Masuda, and S. Selberherr, „Device simulator calibration for quartermicron CMOS devices", in Proc. Simul. Semicond. Process. Dev., K. De Meyer and S. Biesemans, Eds., Leuven, 1998, pp. 93-96.
  • [51] C. Jungemann, B. Neinhüs, and B. Meinerzhagen, „Comparative study of electron transit times evaluated by DD, HD, and MC device simulation for a SiGe HBT", IEEE Trans. Electron Dev., vol. 48, no. 10, pp. 2216-2220, 2001.
  • [52] Z. Yu, B. Ricco, and R. Dutton, „A comprehensive analytical and numerical model of polysilicon emitter contacts in bipolar transistors", IEEE Trans. Electron Dev., vol. 31, no. 6, pp. 773-784, 1984.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0027-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.