PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Neural network modelling of NaNO2 inversion process kinetics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modelling of a complex, heterogeneous process of sodium nitrate (III) inversion with the nitric acid (V) was carried out. The Artificial Neural Network was used for the process kinetics' numerical evaluation. The own set of experimental data was the basis for the Neural Network's training and testing. The optimal Neural Network's structure corresponds to: 4 inputs, 2 hidden layer (with adequately: 10 and 6 neurones) and 2 output neurones. The Neural Network's model correctly describes the inversion process kinetics in the following parameters' ranges: c(0NaNO2) = 0.25-0.5 mol/dm3, c(0NaNO3) = 1.5 - 3.0 mol/dm3, T = 303 - 343 K, Re(m) = 8500.
Rocznik
Strony
37--41
Opis fizyczny
Bibliogr. 20 poz., tab., rys.
Twórcy
  • Department of Chemistry and Inorganic Technology, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice
  • Department of Chemical and Process Engineering, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice
autor
  • Institute of Refractory Materials, Gliwice
Bibliografia
  • (1) Atroshchenko V, Kargin S., Tekhnologiya Azotnoi Kisloty, Goskhimizdat Moscva 1970.
  • (2) Abel A., Schmid R., Z. Phys. Chem. 1928, 132, 55; 1928, 134, 279; 1928, 136, 419; 1930, 148, 334.
  • (3) Ullmann's Enc. of Ind. Chem., Weinheim 1991A - 17, 269.
  • (4) Popovich A., Khimistroi, 1935, 4, 202.
  • (5) Krichevski I., Kantorovich L., Zh. Khim. Prom. 1935, 2, 134.
  • (6) Krustev I., Acad. Bulg. Sci. 1967, 5, 111.
  • (7) Lipowska B., Ph. D. Thesis, Silesian Univ. of Techn., Gliwice 1998 (in polish).
  • (8) Crowford D.B., Counce R.M., Sep. Sci. Techn. 1998, 23, 1573.
  • (9) Piotrowski J., Lipowska B., Dziuba K., Pol. J. Appl. Chem. 1995, 39, 2, 219.
  • (10) Piotrowski J., Lipowska B., Robak A., Pol. J. Chem. Tech. 2000, 3, 31.
  • (11) Piotrowski K., Piotrowski J., Lipowska B., Inż. Ap. Chem. 2000, 39, 6, 12.
  • (12) Masters T , Practical Neural Networks Recipes in C++, ACADEMIC PRESS, Boston 1993.
  • (13) Kasabov N , Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering, BRADFORD BOOK MIT PRESS, London 1996.
  • (14) Żurada J., Introduction to Artificial Neural Systems, WEST PUBLISHING COMPANY, USA 1992.
  • (15) Tambe S.S., Kulkami B.D., Deshpande PB., Elements of Artificial Neural Networks with Selected Applications in Chemical Engineering and Chemical & Biological Sciences, SIMULATION & ADVANCED CONTROLS, INC. Louisville 1996.
  • (16) Meert K., Rijckaert M., Comp. Chem. Eng. Suppl. 1998, 22, S 587.
  • (17) Hoskins J.C., Himmelblau D.M., Comp. Chem. Eng. 1988, 12, 9/10, 882.
  • (18) Chen J., Wong D.S.H., Jang S., Yang S., AIChE Journ. 1998, 44, 4, 876.
  • (19) Piotrowski K., Piotrowski J., Schlesinger J., Chem. Eng. Proc. 2003, 42, 4, 285.
  • (20) DynaMind - User's Guide, NeuroDynaMX
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0026-0089
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.