
Paper A world according
to artificial neural networks

Alfons Schuster

Abstract — This paper presents results from a prelimi-
nary study in the field of artificial neural networks (ANN).
The overall aim of our work relates to the field of cogni-
tive science. In this wider framework we try to investigate,
reason about, and model cognitive processes in order to ob-
tain a better understanding of the major processing device
involved – the human brain. In terms of content this paper
presents a novel ANN learning approach. Note that through-
out the paper we assume supervised learning. In contrast to
the classical ANN learning approach where an ANN algorithm
alters an initial random weight assignment until a reasonable
solution to a problem is obtained this approach does not alter
the initial random weight assignment at all, but provides a so-
lution to the problem by transforming the actual input data.
The approach is applied to perceptrons and adalines and its
quality is demonstrated on simple classification problems.

Keywords — artificial neural networks, cognitive science, input
space transformation.

1. Introduction

A few examples are chosen in order to provide a quick
introduction and also to illustrate the motivation behind
this work.
Example 1. Imagine a student looking for material sup-
porting an assignment. The student probably browses sev-
eral books in a library and maybe selects a few of them for
more detailed study. Important in this example is (a) the
information required by the student is external, in library
books etc., (b) the information is represented in different
formats, i.e. different books may cover the same topics
but the styles etc. may be different in each book, (c) after
a while the student may have forgotten some of the studied
material, i.e. the information may no longer be available in
the brain of the student. In order to re-acquire the informa-
tion the student may need to go back to the library. On the
other hand some of the information may not be considered
(studied) on purpose. For example, in case the information
is false or obsolete.
Example 2. Imagine a person having a dog and also hav-
ing a picture of the same dog. Further imagine a second
person pointing to the real dog asking the question: Who’s
dog is this? Then the dog owner will answer: This is my
dog. Imagine now the second person pointing to the picture
of the dog asking the same question: Who’s dog is this?
Then the person will answer again: This is my dog. The
interesting aspects here are (a) there are two completely
different representations of the dog, namely the dog itself
and the picture of the dog, (b) for the purpose of answer-

ing the question however both representations are sufficient,
(c) the two representations are external to the processing
device – the brain of the dog owner, and (d) the original
data, the physical dog, has been transformed into a different
representation, the picture.

Example 3. Philosophers have been thinking about similar
problems in the past. An example involving the philosopher
Immanuel Kant can be summarised as follows [1]. Imagine
a person wearing green glasses since the day of his/her
birth. The person then would see the world in a shade of
green. This may not necessarily have a major influence on
the person’s life. If the person ever took of the glasses then
the person would see the world differently. The points here
are (a) how can we be sure to experience the world with
our senses as the world really is, i.e. how can we be sure
we are not wearing some sort of glasses? and (b) the data
transformation (here a green shift) may not necessarily have
an impact on our ability to do things or on aspects of our
reasoning. For example, the ability to swim is independent
of the color of the water.

Example 4. This example particularly focuses on artifi-
cial neural networks. ANN learning usually starts with
a random weight assignment followed by a training process
using a training set [2]. The training process alters the
initial random weight configuration and establishes a fi-
nal weight configuration. This final configuration remains
static and specifies the ANN for a particular application sce-
nario. From the viewpoint of ANNs as being a model of
the human brain this approach presents a number of ques-
tions. For example, let N be the total number of neurons in
the brain. Further, imagine a simple classification scenario
that can be solved by the utilisation of an ANN. Let n be
the total number of neurons in this particular ANN. Now
imagine this ANN presenting a part or region in the brain.
Since the weight configuration of this ANN remains fixed
or static after the training process this part of the brain
(the ANN) can only be applied for the particular task it is
designed for. This however could lead to the possible con-
clusion that the number of neurons in the brain that remains
available for other tasks is now reduced to N�n. Although
the number of neurons in the brain is quite substantial this
means that sooner or later the brain runs out of neurons.
This example may be a bit naive, but it helps to illustrate
a major difference between the brain and ANNs, namely
the high dynamic and flexibility of the brain opposed to
the static inflexibility of ANNs.

Example 5. This is not really an example but rather a con-
sideration. If there are different representations of an entity
then a learning device such as an ANN, for example, needs

102



A world according to artificial neural networks

to be constructed for every representation. The previous
example mentioned that this may require a separate set of
neurons for the processing of each representation. From
an energy point of view all these processes require energy.
Nature usually looks for a maximum in efficiency through
a minimum of effort (energy). The processing of each rep-
resentation individually may contradict this particular drive.
A summary of these examples may be:

– The same information can be represented in different
formats, shapes, representations.

– The different representations of the information are
usually external to a learner or learning device (stu-
dent, brain, ANN).

– Some information may be false or obsolete and there-
fore may not be needed to be acquired (studied,
learned).

– Some of the information learned may get lost or for-
gotten.

– In case there are different representations for the same
information then it is ineffective for a learning device
in terms of energy to construct a model for each
representation.

Based on these examples and observations we here consider
the following approach:

– Instead of producing a model for the learning of dif-
ferent representations of the same information use
a single model that is able to learn the different rep-
resentations.

Very generally speaking this paper has a focus on this issue
and investigates a new approach to this problem. The ma-
jor difference of this approach lies in the fact that instead
of modifying the weight configuration of an ANN until the
weight configuration suits the problem the approach pro-
posed here transforms the actual data representing the prob-
lem until the data fits the initial configuration of the learn-
ing device (ANN). The initial weigh configuration assigned
to the ANN at the start of the training process remains un-
changed throughout this process. The transformed data can
be viewed as a different representation of the problem and
the examples given before indicate that it is possible to
arrive at meaningful conclusions using different represen-
tations of the same information (dog/picture). One of the
interesting consequences of this approach is that a single,
random weight configuration can be used for many different
scenarios.
The reminder of the paper is organised as follows. Sec-
tion 2 presents the basic idea behind this paper, namely
ANN training algorithms that are based on the transforma-
tion of input data rather than on the modification of weight
values. Section 3 introduces two such algorithms. Sec-
tion 4 summarises the results obtained from an application
of the approach on simple classification tasks. Section 5
ends the paper with a summary.

2. Classification through data input
space transformation

This section outlines the basic idea behind this paper. Al-
though the paper deals with two well-known ANN training
algorithms, namely the perceptron training algorithm and
the Adaline training algorithm this section only refers to
the perceptron training algorithm [3, 4]. This is basically
due to the fact that the situation for both algorithms is
very similar. The paper uses a simple classification task as
a run-through example for illustration purposes. The task
is illustrated in Fig. 1 and involves the correct classification
of a particular number of different objects into one of two
classes, Class 1 or Class 2.

Fig. 1. A simple, one-dimensional, linearly separable classifica-
tion task.

Imagine, for example, that Fig. 1 illustrates an arbitrary real
valued x-y co-ordinate system in which the classification
scenario takes place. Let the black dots in Fig. 1 represent
objects of Class 1 and the lined circles objects of Class 2.
From the viewpoint of a classification task Fig. 1 illustrates
a simple, one-dimensional, linearly separable task. Such
a task can be solved by a perceptron, for example.

2.1. Perceptron classification

At this stage it is not necessary to know the exact details
of a perceptron, the details are going to be explained at
a later stage. The motivation in this section is to establish
an understanding for the basic strategy behind perceptron
classification. The perceptron training algorithm starts with
a random weight assignment to the perceptron. In the con-
text of the one-dimensional task at hand such a random
weight assignment represents an arbitrary division point on
the x-axes. For example, let the diamond in Fig. 2a be such
an initial, random division point.

Fig. 2. (a) Possible start of perceptron learning process; (b) pos-
sible end of perceptron learning process.

103



Alfons Schuster

Note that the diamond in Fig. 2a does not separate all ob-
jects into their correct classes. The two objects indexed
1 and 2 in Fig. 2a are misclassified. In order to achieve the
correct classification of all objects the perceptron training
algorithm alters the initial weight assignment in a number
of successive, defined steps. This process usually contin-
ues until either all objects are classified correctly, or until
a predefined number of iterations is reached. In illustrative
terms the process of continuously altering the weight con-
figuration of the perceptron is equivalent to an organised
movement of the diamond along the x-axis in Fig. 2a. For
example, after the training process the diamond might end
up in the position illustrated in Fig. 2b. This position actu-
ally represents a solution to the problem, because all sam-
ples of Class 1 are now on one side of the diamond and all
objects of Class 2 are on the other side. The actual details
of the perceptron training algorithm are not so important at
the moment, they will be discussed later. At the moment
this study is interested in the question whether there is an
alternative solution to the classification task given in Fig. 1.

2.2. An alternative solution to the classification problem

Figure 3 indicates an alternative solution to the problem
at hand. In this particular case this alternative solution
shall be referred to as alternative classification algorithm,
or simply ACA.

Fig. 3. (a) Original classification scenario; (b) alternative solution
to the classification task through a transformation of the actual
input data.

Figure 3 illustrates that the ACA is basically an input data
transformation process. The ACA also starts with an initial
random weight assignment. But then, instead of altering
the weight values, which would be equivalent to moving
the initial diamond around, the ACA transforms or shifts
the actual input data in the x-y co-ordinate system until
the initial location of the diamond presents a solution to
the classification task. For example, Fig. 3a represents the
original scenario. Note again that the diamond in Fig. 3a
does not separate all objects into their correct classes. Fig-
ure 3b illustrates a possible scenario after the ACA has
finished a training session. Figure 3b indicates that the lo-
cation of the diamond remains unchanged throughout this
training session, but also that the input data has been trans-
formed in such a way that the initial diamond now presents

a solution to the classification task. The diamond now sep-
arates all objects of Class 1 from objects of Class 2. This
transformation of input data is the basic principle behind
the algorithms presented in the forthcoming sections. Fig-
ure 3 provides one more piece of information. In order to
come up with the correct classification of all objects the
input data has to be transformed by a certain amount. The
index d in the figure indicates that the magnitude (m) of
this transformation or shift has to be m� d.

3. Modified algorithms for perceptron
and Adaline

This section presents two new ANN training algorithms.
The two algorithms are modifications of the well-known
perceptron and Adaline training algorithm and therefore
are referred to as modified perceptron algorithm (MPA)
and modified Adaline algorithm (MAA). The characteristic
feature of the MPA and the MAA is the implementation of
the ideas presented throughout the previous sections, that
is, classification achieved through the transformation of the
data input space as opposed to the update of weight values.

3.1. Perceptron and modified perceptron training
algorithm

The MPA algorithm is a derived modification of the per-
ceptron training algorithm. The section therefore starts
with a brief introduction to perceptrons. Figure 4 illus-
trates a typical perceptron.

Fig. 4. A typical perceptron.

The perceptron in Fig. 4 has one output, and an undefined
number of n inputs (x0; : : : ;xn). The dummy input x0, of-
ten called bias, has a constant value of one. Every input
has a weight value (w0; : : : ;wn) associated with it. The in-
put values and the weight values are usually dealt with as
vectors (e.g., w and i). The output uses the step function
f (x0; : : : ;xn) in order to determine into which of two avail-
able classes an object belongs. The step function is applied
to the weighted sum of the inputs to the perceptron and is
often defined as follows:

f (x0; : : : ;xn) =

�
1 if ∑n

i=0wixi > 0
�1 otherwise

; (1)

where xi and wi are components of the input vector i and
the weight vector w, and the weighted sum ∑n

i=0wixi is

104



A world according to artificial neural networks

given by the scalar product between the input vector and
the weight vector as: w�i = w0x0+ : : :+wnxn. Note that
solving the one-dimensional, linear separable classification
task illustrated in Fig. 1 only requires a single perceptron
with two inputs, x0 and x1.
In order to explain the perceptron training algorithm we
make the following assumptions. For an object of Class 1
the desired perceptron output shall be 1, and for an object
of Class 2 the desired output shall be �1. If an object is
classified correctly then the perceptron remains unchanged.
If the desired output is different from the actual output
generated by the perceptron then the weight vector needs
to be changed such that the error reduces. Theoretically
this process is repeated until the desired output and the
generated output are the same. In reality however linearly
separable problems are not the norm and so the process
usually runs for a predefined number of iterations.
Whenever an input vector is presented to a perceptron for
classification two types of error can occur.

Case 1. The input vector i belongs to Class 1 for which
the desired perceptron output is 1, but w � i � 0 (the actual
perceptron output is �1).

Case 2. The input vector i belongs to Class 2 for which
the desired perceptron output is �1, but w � i> 0 (the actual
perceptron output is 1).

A perceptron strives to overcome both types of error
through a defined weight vector update. This update es-
tablishes a new weight vector w’ from a previous weight
vector w according to: w’ = w+∆w. In the first case the
update has to achieve that w’ � i = (w+∆w)i > w � i. In the
second case the aim is w’ � i = (w+∆w)i < w � i. This be-
haviour can be achieved by letting ∆w = �η i, where η is
a positive constant called the learning rate. These concepts
established define a weight update in the first case as:

w’ � i = (w+∆w)i = (w+η i)i = (w � i+η i � i)> w � i : (2)

Note in particular that η is a positive constant and that the
scalar product i � i > 0. In the second case the update looks
like:

w’ � i = (w+∆w)i = (w�η i)i = (w � i�η i � i)< w � i : (3)

Equations 2 and 3 basically represent the core of the per-
ceptron training algorithm. The task now is to design the
MPA, the modified perceptron learning algorithm.

Modified perceptron training algorithm. Remember that
the initial weight vector remains unchanged in the MPA
training process. The MPA updates the input vector i in-
stead. The MPA input vector update is defined as i’ = i+∆i
and so looks quite similar to a weight vector update de-
scribed before.
The MPA uses this input vector update in order to deal
with the two possible error scenarios mentioned before.
For example, in the first case the input vector i belongs
to Class 1 for which the desired perceptron output is 1,
but w � i � 0 (the actual perceptron output is �1). In this

situation the input vector is updated by the MPA such that
w � i’=w(i+∆i)>w � i. In the second case the input vector
i belongs to Class 2 for which the desired perceptron output
is �1, but w � i > 0 (the actual perceptron output is 1). Here
the input vector is updated such that w � i’=w(i+∆i)<w � i.
With ∆i = �ηw and the learning rate η it is possible to
formulate an MPA update for the first case as follows:

w � i’ = w(i+∆i) = w(i+ηw) = (w � i+ηw �w)> w � i :
(4)

Note, η is a positive constant and the scalar product
w �w > 0. In the second case the update appears as:

w � i’ = w(i+∆i) = w(i�ηw) = (w � i�ηw �w)< w � i :
(5)

Although Eqs. 4 and 5 capture the essence of the MPA
Fig. 5 may provide additional transparency to the whole
process.

Fig. 5. A possible scenario for the MPA algorithm: (a) at the
start; (b) at the end.

Figure 5a illustrates the familiar initial scenario with a ran-
dom, but now static, weight assignment including the two
misclassified objects carrying the labels 1 and 2. The MPA
works similar to the perceptron training algorithm. If an
object is classified correctly then the MPA does not inter-
act. If however the desired output for an object is different
from the actual output generated by the perceptron then the
MPA alters the corresponding input vector until (in case of
linear separability) the current object is classified correctly.
Figure 5b aims to capture this process and illustrates that
only the position of the two initially incorrect classified
objects has changed. Figure 5b also indicates that the or-
der of the position of such objects may change during the
transformation process. For example, the new positions of
objects 1 and 2 are now at 1’ and 2’.

Further, the individual changes in the input vector of
those objects that are actually transformed are recorded by
the MPA. The MPA extracts the value max from this infor-
mation (see Fig 5a). The value max determines the mag-
nitude by which all objects need to be transformed along
the x-axis in order to use the perceptron as a meaningful
classifier. The value max is particularly important for the
classification of unknown objects, that is objects that have

105



Alfons Schuster

not been included in the training session. For such objects
it is necessary to add an offset of magnitude max to their
input vector.

Since results of an application of the MPA are presented
and discussed at a later stage we here leave the perceptron
training algorithm and its modified alternative and proceed
with the investigation of the Adaline training algorithm.

3.2. Adaline and modified Adaline training algorithm

An Adaline is quite similar to a perceptron. For example,
an Adaline also uses a step function in order to determine
the class membership for different objects. For this rea-
son and because both, perceptrons and Adalines, are well
documented in the literature this section only elaborates
on those issues that are necessary for the understanding of
Adalines and the presented here alternative the modified
Adaline training algorithm.

An Adaline is a system that like a perceptron aims for a re-
duction of the number of misclassifications through a de-
fined weight update. The difference to the perceptron train-
ing algorithm is that the Adaline aims to achieve this task
by minimising the mean square error E = (dj �netj)

2 of
the system through the application of a gradient descent
method, where dj is the desired output for a particular in-
put vector i j , and netj is the weighted sum generated by
this input vector and a weight vector. Figure 6 illustrates
a typical Adaline.

Fig. 6. An typical Adaline at work.

The basic formulas responsible for the learning process in
an Adaline are given by Eqs. 6, 7, and 8. These formu-
las basically indicate how an updated weight value w’ is
generated from a previous weight value w:

w’ = w+∆w ; (6)

where

∆w = η(dj �netj)i j ; (7)

where η is the positive learning rate again, dj is the de-
sired output for a particular input vector i j , and netj is the
weighted sum ∑n

i=0wixi; j generated by the scalar product

between the input vector i j and the current weight vec-
tor w. From Eqs. 6 and 7 the updated weight vector w’ is
produced by:

w’ = w+η(dj �

n

∑
i=0

wixi; j)i j : (8)

A final difference between the perceptron and the Adaline
needs to be mentioned. The perceptron training algorithm
as well as its modification the MPA updates a weight vec-
tor/input vector only if the output generated by the percep-
tron is different from the desired output. On the other hand,
the Adaline training algorithm and its modified alternative
apply an update at every presentation of a sample to the
system.

Modified Adaline training algorithm. The task now is
similar as before and contains modifying Eq. 8 in such
a way that instead of the weights the actual input data is
transformed, without loosing the quality of the system as
a classifier. The three equations below provide a summary
of the mathematical procedures involved. They are very
similar to Eqs. 6, 7, and 8 and form the basis for the mod-
ified Adaline algorithm MAA:

i’ = i+∆i ; (9)

∆i = η(dj �netj)wj ; (10)

i’ = i+η(dj �

n

∑
i=0

wixi; j)wj ; (11)

where i’ is the resulting, updated input vector. A closer
look at the different equations reveals again that the main
difference is basically a substitution between the weight
vector w and the input vector i. So much for the mathe-
matical background of the different algorithms. The next
section provides a summary of the results obtained from an
application of the different algorithms.

4. Results

All algorithms (the original perceptron and Adaline training
algorithm as well as their modifications MPA and MAA)
were applied and evaluated on simple classification tasks.
The problem to solve was always a one-dimensional, lin-
early separable classification problem, similar to the prob-
lem illustrated in Fig. 1. The total number of objects in-
volved in a classification task was variable, but every class
contained the same number of objects. The x-axis in Fig. 1
was given by the interval [0, 1]. The position of the ob-
jects in this interval was generated by the random number
procedure included in the Delphi5 programming tool that
was utilised for the programming of the algorithms. The
position of the initial division point (the diamond in Fig. 1)
was variable and so it was possible to generate a particular
number of misclassified objects.

106



A world according to artificial neural networks

Very generally speaking it can be said that the modified
algorithms MPA and MAA performed more or less equally
well as their original counterparts perceptron and Adaline
did. Since the problems posed did not contain any outliers
MPA and MAA were always able to solve the classification
tasks given to them, provided the number of iterations that
was sufficiently high. For a particular task the number of
iterations needed by MPA and MAA was about in the same
range as the number of iterations needed by the perceptron
and Adaline algorithm. In case of outliers MPA and MAA
face similar problems as the original perceptron and Ada-
line algorithm do. The similarity of the approaches may
allow the assumption that approaches to tackle the issue
of outliers in MPA and MAA are similar to approaches
proposed and known for perceptrons and Adalines [2].
The overall conclusion for the undertaken study is that all
the different algorithms did perform about equally well on
the problems given to them, and so MPA and MAA do not
stand back behind the traditional perceptron and Adaline
algorithms.

5. Summary and future work

The paper presents two new classification algorithms. To
some extent these algorithms are derived from the classi-
cal perceptron and Adaline training algorithm. The major
difference between the new algorithms and the classical
algorithms is in the data manipulation that occurs during
the learning process. The classical systems are based on
the manipulation of weight vectors, whereas the proposed
algorithms manipulate or transform the actual input data
entering a system.
The quality of the proposed algorithms was investigated
and tested on simple one-dimensional, linearly separable
classification tasks. The proposed algorithms performed
well on these. Their performance actually did match the
quality of the classical approaches.
The approach has a number of interesting aspects. For ex-
ample, the proposed algorithms allow a single system with
an initial, random configuration to learn a variety of sim-
ilar, but in context completely different, problems without
changing the actual system configuration at all. This makes
the approach flexible and this is one aspect mentioned at
the outset of this study. This aspect might be particularly
interesting in a neuroinformatics context. At this stage no-
body really knows how the brain really works, and there-
fore there is a need for new directions and proposals even if
they are a bit naive at first sight.

Future work. There are a few directions into which this
study can be continued. For example, an interesting route
relates to the question whether it is possible to apply the
approach to more complex network structures, for instance
networks with input, output and hidden layers. It is also
possible to invest the approach and potential consequences
from a mere cognitive science and maybe philosophical
position. For example, how does a system interpret an
environment when the information about this environment
is transformed in the learning process. We hope to engage
into some of these questions in forthcoming studies.

References

[1] P. H. Koesters, Deutschland Deine Denker. Gruner+Jahr AG & Co,
1981.

[2] K. Mehrotra, C. K. Monan, and S. Ranka, Elements of Artificial
Neural Networks. The MIT Press, 1997.

[3] F. Rosenblatt, “The perceptron, a probabilistic model of informa-
tion storage and organization in the brain”, Psych. Rev., vol. 62,
pp. 386–408, 1958.

[4] B. Widrow, “Generalization and information storage in networks of
Adaline neurons”, Self-org. Syst., vol. 10, pp. 435–461, 1962.

Alfons Schuster holds a Ph.D.
in computer science from the
University of Ulster in North-
ern Ireland, and a B.Sc. in ap-
plied physics from the Univer-
sity of Applied Sciences Mu-
nich in Germany. His current
research interests include artifi-
cial intelligence, robotics, and
DNA computing. Dr Schuster
has several years working expe-

rience in industry and research. He is currently employed
as a lecturer at the Faculty of Informatics of the University
of Ulster at Jordanstown in Northern Ireland.
e-mail: a.schuster@ulster.ac.uk
Faculty of Informatics
School of Computing and Mathematics
University of Ulster
Shore Road, Newtownabbey, Co. Antrim, BT37 0QB
Northern Ireland

107


