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Abstract — The paper is devoted to studying general fea-
tures of dynamic network routing problems. It is shown that
these problems may be interpreted as receding horizon opti-
mal control problems or simply regulation problems. In the
basic formulation it is assumed, that the nodes have no dy-
namics and the only goal of the optimization mechanism is
to find the shortest paths from the source to the destination
nodes. In this problem the optimization mechanism (i.e. the
Bellman-Ford algorithm) may be interpreted as a receding
horizon optimal control routine. Moreover, there is one-to-
one correspondence between the Bellman optimal cost-to-go
function in the shortest path problem and the Lyapunov func-
tion in the regulation problem. At the end some results of
the application of the routing optimization algorithm to an
inverted pendulum regulation problem are presented.

Keywords — stabilization, nonlinear control, optimal control,
dynamic programming, data networks, routing algorithms.

1. General optimal control problem
formulation

We consider a deterministic stationary discrete-time, dy-
namic system described by the state equation:

xk+1 = f (xk;uk); k= 0;1;2; :::;τ (1)

where xk, uk, such that

xk 2 S (2)

uk 2U (3)

are, respectively, the state and control vectors, and

f : S�U ! S: (4)

By S, U we denoted the subsets of some vector spaces of
dimensions n and m, respectively.
For this system we would like to find a closed-loop control
strategy

π = fµ0;µ1; : : : ;µτg ; (5)

where µk(:);k = 0;1; : : : ;τ , is the kth stage control rule,
admissible in the sense of state and control constraints,
that is

uk = µk(xk) 2U; 8xk 2 S; (6)

that minimizes the cost functional:

J(x0) =
τ

∑
k=0

g
�
xk;uk

�
(7)

with respect to both the policy π and the terminal time τ
(i.e., the control horizon is free).
Let us select a point x̄ from the state space S. We will
assume, that for all x 6= x̄ and any u2U

g(x;u)> 0 (8)

and there exists ū2U such that:

f (x̄; ū) = x̄ (9)

with

g(x̄; ū) = 0: (10)

For instance g may be a quadratic function:

g(x;u) = (x� x̄)0Q(x� x̄)+

+(u� ū)0R(u� ū) ; (11)

where the matrix Q is positive semidefinite and the ma-
trix R is positive definite.
Summing up, we consider an optimal control problem with
a fixed terminal state, but free terminal time, defined by

min
π

(
J(x0) =

τ

∑
k=0

g
�
xk;uk

�)
(12)

xk+1 = f
�
xk;uk

�
(13)

uk = µk(xk) 2U (14)

x0 = x (15)

xτ = x̄ (16)

where 8k xk 2 S.
We assume, that the system (13)–(15) is controllable to the
point x̄ from every point of the state space.
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2. Analysis

We will apply an analysis method inspired by Luen-
berger [6].
First, let us notice, that in our problem all functions are
time-invariant (stationary). It means, that the solution will
not depend on time, either. More precisely, the optimal
trajectory from a given state x to the endpoint x̄ is inde-
pendent of the time k0 at which xk0

= x. That is, if x0 = x

leads to the optimal trajectory fx̃kg for k > 0 with final
time τ(x), then the condition xk0

= x must lead to the tra-

jectory fx̃k+k0
g with final time τ(x)+k0. The delay of the

initial time causes only delaying of the whole solution and
the terminal time (i.e., the time of reaching the state x̄) is
simply an unknown function of the initial state only.
The optimal control rule is also a stationary function, that
is for every k

uk = µ�
�
xk

�
: (17)

It must be so, because the initial control, as we have just
stated, depends only on the initial state, not on the initial
time, and we can repeat this reasoning at each time instant.
Because of the assumptions (8)–(10) there will be:

µ� (x̄) = ū: (18)

If µ�(:) is the optimal control rule, then we will obtain the
following closed-loop system equation:

xk+1 = f
�
xk;µ

�
�
xk

��
: (19)

Let us notice, that due to Eqs. (18) and (9) the point x̄
is an equilibrium point of the system (19) and according
to the construction of the rule µ�(:) the system eventually
reaches x̄. Hence, the system is stable.
Now, let us analyze formally the stability of the system and
consider the optimal value function (that is the Bellman
function, sometimes called “the optimal cost-to-go”) Vk(x)
for this problem, expressed as:

Vk

�
xk

�
=

k+τ(xk)

∑
l=k

g
�
xl ;µ

�(xl )
�
; (20)

where the function g(:; :) is defined by Eq. (10). This is the
optimal (minimal) cost of the passage to x̄ at time k+τ(xk)
when the initial point is xk with time k. This function
satisfies the following conditions:

(i) Vk(x̄) = 0

(ii) Vk(x)> 0 for x 6= x̄

(iii) Vk+1(xk+1)�Vk(xk) =�g
�
xk;µ

�(xk)
�
< 0 for xk 6= x̄

Thus V – the Bellman function is a Lyapunov function and
we proved the stability of the system.

3. Discrete-state version

In this section we will assume, that the sets S and U are
finite and have, respectively, T + 1 and V + 1 elements.
For the sake of simplicity we denote them by subsequent
integers, that is:

S= f0;1;2;3; : : : ;Tg (21)

U = f0;1;2;3; : : : ;Vg (22)

Consequently we will have:

xk 2 S� Zn (23)

uk 2U � Zm (24)

In these circumstances, for any state xk = i 2 S, a control
uk = u 2 U can be associated with a transition from the
state xk = i to the state f (i;u) = j 2 S. This passage is
characterized by a cost:

ci j = min
u2U

f (i;u)= j

g(i;u) (25)

We assumed, that in the case when there are several controls
u2U , such that:

f (i;u) = j (26)

we choose as the passage cost (25) the minimal cost among
all costs corresponding to this passage.
Let us define now as a destination state T 2 S. We will
assume that the system may remain in this state, that is

9uT 2U f (T;uT) = T (27)

and that the cost of being in this state equals zero, that is:

g(T;uT) = 0: (28)

In these conditions the state T is absorbing, that is if the
system (1) passes to it, it remains in it for ever.
With this notation, we can interpret our deterministic opti-
mal synthesis problem as a shortest path problem from an
initial state 0 to the terminal state T (Fig. 1).
Let us denote now by N(i) the set of all direct neighbours of
the node i. The optimized dynamic programming algorithm
for this problem will take the form:

J(i) = min
j2N(i)

fci j +J( j)g (29)

with the terminal condition:

J(T) = 0: (30)

68



On the connections between optimal control, regulation and dynamic network routing

Fig. 1. Graph describing deterministic discrete optimal control
problem with terminal state.

4. Routing problem and the
Bellman-Ford asynchronous

algorithm

The shortest path problem presented above, with a special
structure resulting from the original optimal control formu-
lation, may be immersed into a broader class of problems,
namely into the class of routing problems. It consists in
finding for every node from the set S= f0;1;2; : : : ; Ig a ta-
ble defining direct neighbours to which a load or message
addressed to some remote node r should be transmitted.
A destination may be every node from the set S.
Usually this problem is solved with the help of the asyn-
chronous Bellman-Ford algorithm. This algorithm may be
shortly described in the following way [1, 2, 4].
Let us denote the set of all arcs (i; j) between elements
of the set S by A. Every arc from A can be character-
ized by the weight representing its length ci j . The problem
is to compute for every node i 2 S vectors xir of short-
est distances from this node to the node r . We assume,
that every arc in the directed graph G = (S;A) has pos-
itive length and that there exists at least one path from
every node to others. Then the shortest distances corre-
spond to the unique fixed point of the monotone mapping
F : RI+1�RI+1!RI+1�RI+1 defined by Frr (x) = 0; r 2S
and

Fir (x) = min
f j j(i; j)2Ag

(ci j +xjr ); i 2 S: (31)

The Bellman-Ford algorithm consists in the iteration

xir := Fir (x) = min
f j j(i; j)2Ag

(ci j +xjr ); 8i; r 2 S (32)

or in the vector notation:

x := F(x) (33)

and can be shown to converge to a fixed point

x� = F(x�) (34)

when initialized with xi j = ∞ 8i 6= j .

The convergence takes place also in the case of an asyn-
chronous implementation [1, 4].

5. Integration

Taking into account conclusions drawn from the previous
sections, we can write the following:

1. The optimal control policy in the receding hori-
zon control problem for stationary systems with
a Lagrange-type performance index is stationary.

2. When the terminal time is free, the optimal closed-
loop control problem consists in finding the minimal
cost trajectory from any point of the state space to
a given point x̄.

3. The deterministic closed-loop discrete optimal con-
trol problem with a fixed terminal state but with free
terminal time (i.e. horizon) can be represented as
a shortest path problem.

4. The shortest path may be solved with the help of the
Bellman-Ford algorithm designed for routing prob-
lems, that might be implemented asynchronously (as
in the Internet protocols RIP, IGP or Hello [2]).

Thus, having discretized the problem (12)– (16), connecting
all resulting nodes according to the state equation (13) and
solving the shortest path problem from all nodes to the node
representing the point x̄, we can transform the receding
horizon optimal control problem into the routing problem
and vice-versa.

6. Application of the routing algorithm
to the stabilization of an inverted

pendulum

To confirm experimentally the equivalence between rout-
ing algorithms and the feedback regulation the presented
approach was tested on an example taken from [5].
A control law synthesis problem for a simple inverted pen-
dulum was considered. The state variables of this system
are the angle ξ and the angular velocity ξ̇ . The input u is
a torque in the shaft, which is bounded to such an amount,
that the pendulum cannot directly be turned from the hang-
ing into the upright position. Instead, it is first necessary
to “gain enough momentum”, which requires a complex
trajectory planning, even for this simple system. This non-
linearity posses the main difficulty for the feedback design
in this example.
The system is described by the state equations:

ẋ1(t) = x2(t) (35)

ẋ2(t) = sinx1(t)+h(u(t)) ; (36)
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where x1 = ξ ; x2 = ξ̇ and h(:) is the linear function with
saturation, when the module of its argument exceeds 0:7,
that is

h(u) =

8><
>:

�0:7 u��0:7

u �0:7< u< 0:7

0:7 u� 0:7

(37)

An interesting feature of the above system is that a con-
tinuous state feedback, which asymptotically stabilizes the
system for all initial conditions, does not exist! The rea-
son is, that for any continuous feedback there is a different
than origin equilibrium point. More precisely, this point
has a nonzero first coordinate. It must be so, because the
function

f (x1) = sinx1+h(µ(x1;0)) (38)

Fig. 2. Trajectories x1 (---), x2 (� � � ), u (—) for initial condition
[π;0] and RB controller.

Fig. 3. Trajectories x1 (---), x2 (� � � ), u (—) for initial condition
[ π

2 ;0] and RB controller.

has the positive sign for x1 = π�arcsin0:8 and the nega-
tive sign for x1 = π +arcsin0:8. It means (from the Dar-
boux theorem) that this function has a root in the inter-
val [π � arcsin0:8; π + arcsin0:8]. In other words, the
dynamic system (35)–(36) has an equilibrium point with
a zero second and a nonzero first coordinate.

Fig. 4. Trajectories x1 (---), x2 (� � � ), u (—) for initial condition
[� 2

3π;0] and RB controller.

The system (35)–(36) was discretized under the following
conditions:

– the conversion to the discrete-time representation was
obtained via the Euler scheme for a sampling interval
Ts = 0:5;

– as the state coordinate x1 space, the interval [�4;4]
was taken; it was discretized into 221 levels;

– as the state coordinate x2 space, the interval
[�1:6;1:6] was taken; it was discretized into 121 lev-
els;

– the control space (the interval [�0:7;0:7]) was di-
vided into 20 equal subintervals;

– the cost function g(x(t); u(t)) was assumed to be
quadratic, that is

g(x;u) = x0Qx+u0Ru (39)

with

Q=

�
5 0
0 2

�
(40)

and R= 2.

It is worth noting, that according to the state equa-
tions (35)–(36), for u = 0, except of the origin, there are
many other equilibrium points, those of coordinates:
[kπ ; 0], k = 0;1;2; : : : . For instance, in the domain, there
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are two other (actually it is the same point, where the pen-
dulum is hanging freely) such points.
Several experiments for different initial points were per-
formed. All of them finished in the origin.
The resulting trajectories of the state and control variables
are presented in Figs. 2–4. The abbreviation RB means
routing based (controller).
For comparison, next figures (Figs. 5–7) present the
same trajectories, obtained with the help of LQ method-
ology, without saturation of the function h(:) (that is, it
was replaced by identity). In those experiments, the sys-
tem (35)–(36) was linearized in the origin, then the opti-
mal static feedback matrix K (that is u= K �x) was calcu-
lated, with the help of the Matlab Control Toolbox (proce-
dure ’lqr’).

Fig. 5. Trajectories x1 (---), x2 (� � � ), u (—) for initial condition
[π;0] and LQ controller.

Fig. 6. Trajectories x1 (---), x2 (� � � ), u (—) for initial condition
[ π

2 ;0] and LQ controller.

It is seen, that although in all cases the LQ controller was
able to stabilize the pendulum, the control u was very big,
out of the admissible interval [�0:7;0:7] of the previous
(RB) case.

Fig. 7. Trajectories x1 (---), x2 (� � � ), u (—) for initial condition
[� 2

3π;0] and LQ controller.

Fig. 8. Trajectories x1 (---), x2 (� � � ), u (—) for moving pendulum
and LQ controller with saturation for initial condition [π;0].

After the series of experiments it turned out, that in the
case when the control constraints are taken into account
while implementing the LQ control law, even for much
greater values of the coefficient R, it is impossible to con-
duct the pendulum from the free ([π ;0]) to the upright
position (Fig. 8). Let us recall, that it was not a prob-
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Fig. 9. Trajectories x1 (---), x2 (� � � ), u (—) for moving pendulum
and LQ controller with saturation for initial condition [π;0:5].

lem for RB controller (Fig. 2). However, after giving the
pendulum some momentum, the LQ controller with satu-
ration succeeded in regulating the pendulum to this posi-
tion (Fig. 9).

7. Conclusions

The paper presented connections between a nonlinear sta-
bilization problem and a network routing problem. The
may idea lies in the formulation of the original regulation
problem as a set of discrete-time receding horizon control
problems, solved for all initial states. The optimal control
rule may then be calculated (after state discretization) by
the application of the Bellman-Ford algorithm, which is an
elementary method for calculation of the shortest paths in
networks.
An inverted pendulum case of study results showed, that
the regulator obtained in this simple way has some advan-
tages over classical LQ approach: it requires much smaller
controls to move the state of the system to the equilibrium
point neighbourhood, and it can successfully control the
system even for initial conditions lying very far from the
equilibrium point (that is, it is global). The drawbacks of
this regulator are small oscillations around the terminal

point, caused by discretization, and the longer time of reg-
ulation. Because of that, the best solution in the case of
continuous nonlinear systems would be probably a hybrid
regulator: discrete – routing based for points lying far from
the terminal point and continuous – LQ methodology based,
in its neighbourhood.
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