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Abstract — Multiple criteria evolutionary algorithms, being
essentially parallel in their character, are a natural instrument
of finding a representation of entire Pareto set (set of solutions
and outcomes non-dominated in criteria space) for vector opti-
misation problems. However, it is well known that Pareto sets
for problems with more than two criteria might become com-
plicated and their representation very time-consuming. Thus,
the application of such algorithms is essentially limited to
bi-criteria problems or to vector optimisation problems with
more criteria but of simple structure. Even in such cases,
there are problems related to various important aspects of
vector optimisation, such as the uniformity of representation
of Pareto set, stopping tests or the accuracy of representing
Pareto set, that are not fully covered by the broad literature on
evolutionary algorithms in vector optimisation. These prob-
lems and related computational tests and experience are dis-
cussed in the paper. In order to apply evolutionary algorithms
for decision support, it would be helpful to use them in an in-
teractive mode. However, evolutionary algorithms are in their
essence global and of batch type. Nevertheless, it is possible
to introduce interactive aspects to evolutionary algorithms by
focusing them on a part of Pareto set. The results of experi-
mental tests of such modifications of evolutionary algorithms
for vector optimisation are presented in the paper. Another
issue related to vector optimisation problems with more than
two criteria is the computational difficulty of estimating nadir
points of Pareto set. The paper describes the use of diverse
variants of evolutionary algorithms to the estimation of nadir
points, together with experimental evidence.

Keywords — evolutionary algorithms, vector optimisation, nadir
point estimation, reference point techniques.

1. Evolutionary algorithms in vector
optimisation: general comments

There are many excellent reviews of evolutionary algo-
rithms used in vector optimisation [3–5, 10, 12]. Most
of them, however, treat evolutionary or genetic algorithms
as goals in themselves, as given tools that should be further
developed and put into use. In this paper, we concentrate
rather on the use of such algorithms for solving various
tasks of vector optimisation or multiple criteria analysis for
decision support.

First, let’s recall the traditional distinction between genetic
and evolutionary algorithms: genetic algorithms rely on bi-
nary representation of individuals, while evolutionary algo-
rithms admit real-valued (computational) representations.
For vector-valued representations, evolutionary algorithms
are more appropriate. On the other hand, special meth-
ods developed for genetic algorithms can be also usefully
translated into evolutionary algorithms.

Next, we observe that evolutionary algorithms are applied
to vector optimisation in order to obtain accurate repre-
sentation of the Pareto set (or any modified concept of
a non-dominated set). Being inherently parallel, evolu-
tionary algorithms are a natural approach to the problem
of representing a complicated set. However, research on
truly parallel or distributed implementations of evolution-
ary algorithms is scarce. Thus, the application of such
algorithms is essentially limited to bi-criteria problems or
very simple vector optimisation problems with more cri-
teria. Accurate representation of more complicated Pareto
sets using evolutionary algorithm still requires huge com-
putation efforts.

On the other hand, practical applications of vector optimisa-
tion to decision support require interactive multiple criteria
analysis [11], where instead of computing a single Pareto
set, various characteristics of selected variants or parts of
Pareto sets are needed for subsequent formulations of the
problem being analysed. Such cases include utopia points,
nadir points, neutral compromise points of Pareto sets and,
finally and most importantly for interactive applications –
representations of selected segments of Pareto sets. While
evolutionary algorithms might be useful for obtaining such
characteristics, little attention was given to such applica-
tions. Generally speaking, the same fact can be stated as
follows: since evolutionary algorithms are global and non-
interactive in their nature, the challenge in their applica-
tions for multiple criteria analysis is to make them more
local and interactive. While this paper does not resolve all
problems related to this challenge, it tries to move in this
direction – by treating evolutionary algorithms not as main
goal in itself, but as a way of addressing various tasks of
multiple criteria analysis.
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2. Modifications of evolutionary
algorithms in vector optimisation

2.1. Representation of individual

By individual in genetic or evolutionary algorithms, we
consider a current solution point together with additional
parameters, typically characterising its mutation potential
by specifying the dispersion σ . In vector optimisation or
multiple criteria analysis, current solution is typically rep-
resented by a vector of decision variables x2Rn and vector
of decision outcomes or criteria q2Rk. Dispersion parame-
ters are related to decision variables and can be represented
by a vector of the same dimension. Thus, an individual is
represented by:

ind = (x;σ ;q) 2 R2n+k
: (1)

2.2. Constraints

Constraints on decision variables (either in equation or in-
equality form) define the permissible set of decisions:

X0 =

(
gi(x)� 0; i 2 I

x2 Rn :
hi(x) = 0; i 2 E

)
: (2)

In genetic algorithms, if x is not in X0, the individ-
ual is simply discarded. This may lead, however, to
quite long computations if the set X0 has a compli-
cated structure. Therefore, we shall use a method typi-
cally adopted in evolutionary algorithms to represent con-
straints – applying penalty functions. There are many types
of penalty functions (internal, external, exact, shifted, etc. –
see e.g. [11]). With evolutionary algorithms that do not
need derivatives of optimised functions, it is best to use
exact non-differentiable external penalty functions of the
type jhi(x)j and jgi(x)�j= min

�
gi(x); 0

�
j (with sufficiently

large penalty coefficients), which are added to each crite-
rion value – if it is minimised or subtracted – if maximised.

2.3. Cross-breeding

Cross-breeding is a typical evolutionary operation. In vec-
tor optimisation, cross-breeding applies to two parent indi-
viduals represented by decision variable vectors x1 and x2;
their successor x0 may be determined as follows:

x0 = ax1+(1�a)x2; (3)

where the parameter a is a random variable from the in-
terval a 2 [0; 1]. This is called basic arithmetic cross-
breeding, while extended arithmetic cross-breeding applies
to each component x0i of the vector x0 with separately gener-
ated random coefficients ai . There are several other variants
of cross-breeding, such as heuristic cross-breeding, not dis-
cussed here.

2.4. Mutation

In vector optimisation, mutation is applied to every compo-
nent xi of the decision variable vector x (usually, mutation
is additionally applied to a successor of cross-breeding) by
selecting a random variable with a normal distribution and
modifying the component xi by this variable with a corre-
sponding dispersion coefficient:

ξ x
i 2 N(0; 1) ;

x0i = xi +σ 0
i ξ

x
i : (4)

Additionally, the dispersion coefficient is modified ran-
domly, but usually slowly decreased after (or before) each
mutation. This decreasing modification of dispersion pa-
rameters slows down mutations when approaching solu-
tions. In vector optimisation, it results in coming closer
to the Pareto set.

2.5. Selection

Selection is responsible for convergence of a genetic al-
gorithm towards optimal solutions and applies to selection
of parent individuals (selection in reproduction); there are
numerous methods of such selection, not discussed here.
In evolutionary algorithms, succession may substitute for
selection. This means choosing the µ as best individ-
uals from population µ + λ (so-called µ + λ succession
strategy; µ denotes here a population from parent indi-
viduals, λ the corresponding population of successors) in
some way. Another strategy consists of simply substitut-
ing parent population µ by successor population λ (the
so-called µ ; λ strategy). For vector optimisation purposes,
succession is superior to selection.

2.6. Pareto ranking

Succession process includes multiple stages to uniformly
approximate Pareto set by an evolutionary algorithm. First,
we use Pareto ranking of a population, then apply special
niched methods for preserving uniformity of representation,
and finally use special succession methods. We will de-
scribe all of them below.
Pareto ranking consists of attaching a rank value (the lower
the better) to each individual. Goldberg [2] has proposed
to give rank 1 to each non-dominated individual in popu-
lation. Next, we delete the non-dominated individuals and
determine non-dominated individuals in remaining part of
population, giving them rank 2. We continue the process
with increasing rank values until each individual has a rank
value. Then we can either select successor population of
given number of individuals according to lowest rank val-
ues, or – as proposed by Goldberg – determine the prob-
ability of reproduction depending on rank value (which is
actually a selection, not a succession mechanism).
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Another ranking method proposed by Fonseca and Flem-
ing [4] involves assigning each individual a rank value
of 1 plus the number of other individuals dominating this
individual. This method provides for more differentiation
of a population than Goldberg method.

Having a rank value, it is easy to determine a fitness indi-
cator f it (x) – for example, by defining it as inverse of the
rank value.

2.7. Niched methods

Having a fitness value or fitness function for Pareto rank-
ing, it is easy to apply the basic principle of evolution-
ary algorithms – the survival of the fittest individuals.

Fig. 1. The set of attainable criteria values (a) and the Pareto
set (b) for the nonlinear example.

However, such a method does not result in a uniform repre-
sentation of the Pareto set. The fittest individuals can form
an elite close to each other, representing only an “easy”
part of Pareto set. Such degeneration of the survival of
the fittest principle can be illustrated by a relatively simple,

but nonlinear example (Fig. 1). We maximize two criteria
functions (with – 0:5� x� 6):

max :q1(x) =

8>><>>:
x+2 x� 1

�x+4 1< x� 3
x�2 3< x� 4

�x+6 x> 4

9>>=>>; ;

max :q2(x) = �x2+10x+5: (5)

Fig. 2. Non-uniform representation of Pareto set with a sim-
ple survival of the fittest evolutionary algorithm (population size:
50, 200 generations).

Fig. 3. Examples of sharing functions.

Application of a simple survival of the fittest algorithm
here results in a degenerated representation of the Pareto
set, concentrating on the “easy part” of the set (Fig. 2).
In order to overcome this difficulty, we must penalise the
fitness function for individuals being too close to each other.
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With this aim, we define a sharing function depending on
a distance of two individuals, say x and x0. This sharing
function sh must have the following properties:

0� sh(x�x0)� 1; for any distancejx�x0j

sh(0) = 1

lim sh(x�x0) = 0; jx�x0j ! ∞ : (6)

Sharing functions shown in Fig. 3 belong to the family:

sh(x�x0) =

8<:1�

�
jx�x0j

D

�p

jx�x0j< D

0 jx�x0j � D
; (7)

where D is a diameter of a niche.
The so-called niched methods consist of modifying fitness
values f it (x) for a given individual x, reciprocal to the
sharing function:

f it 0(x) =
f it (x)

1+m(x)
; (8)

where m(x) is a sum of sharing functions over other non-
dominated individuals y in given population:

m(x) = ∑
y

sh
�
d(x; y)

�
: (9)

Figure 4 illustrates effectiveness of such niched methods
in preventing degeneration through cross-breeding of too
close individuals.

Fig. 4. Effectiveness of a niched method with D=0:1 (population
size: 50, 200 generations).

We see it is necessary to use niched methods in evolution-
ary algorithms of vector optimisation not only in order to
obtain a uniform representation of Pareto set, but also to
prevent degenerate populations resulting from naive direct
application of the “survival of the fittest” principle.

2.8. Stopping tests

Before discussing succession methods, stopping tests for
entire algorithm should be discussed. Stopping test for
evolutionary and genetic optimisation algorithms are much
less developed than for analytical optimisation methods. If
the optimal value of an optimised function is known (which
happens only in very special cases) then the distance from
this optimal value can be used for a stopping test. Other-
wise, one must limit the number of iterations in the algo-
rithm (number of generations in a genetic or evolutionary
algorithm) and hope for a good accuracy. Another stopping
test is based on the speed of change of an approximation of
the solution: work stops when changes fall below certain
level.
For vector optimisation, the issue of stopping tests is more
complicated. We can rely on a given number of iterations
or generations, but cannot easily use the speed of change,
because we approximate or represent an entire Pareto set
and the uniformity of this representation is also a goal.
A substitute for the speed of change might be a compari-
son of two subsequent generations and checking how many
individuals in the next generation dominate some individ-
uals in the former generation. Figure 5 shows example of
such computation.

Fig. 5. Average numbers of dominated individuals between gen-
erations for a typical evolutionary algorithm.

We see such a stopping test cannot be very reliable. Other
tests, however, might be related to special features of vec-
tor optimisation. One relates to the uniformity of Pareto
set representation, which can be represented by average
value of sharing function m(x) as defined by Eq. (9). An-
other relates to the concept of utopia and nadir points for
a Pareto set. For an approximation of Pareto set obtained in
a subsequent generation numbered here by i, it is relatively
easy (see also point 4) to compute utopia points qU

i (“low-
est” points dominating entire Pareto set) as well as nadir
points gN

i (“highest” points dominated by the entire Pareto
set). If the approximation of a Pareto set converges to the
actual Pareto set, the distance between the approximations
of utopia and nadir points:

un(i) = jqU
i �qN

i j (10)
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increases and converges to the value characterising the
actual Pareto set. We illustrate both of these concepts
on an example (we use here an example defined later
by Eq. (22)) – see Figs. 6 and 7.

Fig. 6. Average values of sharing function in subsequent gener-
ations for Eq. (22).

Fig. 7. Utopia-nadir distances in subsequent generations for
Eq. (22).

We observe that after a small number of iterations most
of the analysed measures oscillate around a constant value
and thus are not particularly useful for stopping tests. An
exception is the distance of utopia and nadir approxima-
tions, which converges to a constant value after a relatively
large, but reasonable number of iterations. Thus, the rela-
tive change of the distance of utopia and nadir approxima-
tions is the best stopping test for estimating a Pareto set by
evolutionary algorithms.

2.9. Succession methods

Application of niched methods results in decreasing fitness
of an individual in densely represented parts of a Pareto set.
However, this might lead to concentration on the boundaries
of the Pareto set, demonstrated by the following example.
Analysing how to choose successors in order to get a uni-
form representation of a Pareto set, we investigated a simple
case: let the Pareto set in three-dimensional space belong

to the plane z= 0 and be a square x; y 2< 0; 9>. The
simplest niched method with the niche diameter of 2 gives
the following values of fitness function (100 points arranged
in square table) shown in Fig. 8.

Fig. 8. Values of a fitness function for the simple case considered.

By applying the simplest succession method based on
a simple ranking of the individuals to this case, we pro-
mote individuals located on the boundary of Pareto set
(Fig. 9).

Fig. 9. Successors in the simple case with basic ranking succes-
sion rule (µ = 0:25).
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Table 1
Comparison of various succession methods

Succession method

Parameter ranking roulette tournament modified fitness deterministic

µ = 10

Computing time [ms] 36.59 4.84 7.40 28.56 1744

Average fitness 0.807 0.807 0.779 0.820 1

µ = 25

Computing time [ms] 39.13 8.89 14.30 33.30 1665

Average fitness 0.520 0.579 0.548 0.601 1

µ = 50

Computing time [ms] 46.92 19.14 29.70 43.63 1466

Average fitness 0.374 0.367 0.348 0.381 0.469

We can also imagine a deterministic (actually – non-
evolutionary) succession rule in which we eliminate in a de-
terministic loop subsequent individuals, while increasing
the fitness of its neighbours. The process is repeated until
the population drops to a given number of individuals, as
illustrated by Fig. 10.

Fig. 10. Block-diagram of a deterministic succession rule.

Another succession rule is obtained by modifying definition
of coefficient m(x), needed to determine fitness. Instead
of summing it up over all non-dominated individuals as
in Eq. (9), it can be summed up only for individuals with
lower index numbers on the list:

m(x) =
y�1

∑
x=1

sh
�
d(x; y)

�
: (11)

That way, the individuals considered first on the list obtain
greater fitness indicators (Fig. 11).

Yet another methods of succession for evolutionary vec-
tor optimisation can be obtained by modifying roulette
and tournament approaches to general evolutionary algo-
rithms. Recall that a roulette approach determines succes-
sors (or selects individuals for cross-breeding) randomly,
with probability increasing with the fitness indicator. Tour-
nament approach determines successors by selecting ran-
domly k individuals for a tournament and then selecting

the tournament winner as the individual with highest fit-
ness indicator (or randomly selects one of them, if there
is a tie). Both approaches give similar results in our case
(Fig. 12).
The above mentioned methods were compared in terms of
their accuracy (defined by uniform coverage of the Pareto
set, measured by average value of fitness indicator, that
should be highest for a uniform coverage) and computa-
tional effort needed to solve this simple case. Table 1 gives
results obtained by using a PC with 700 MHz Pentium III
processor, after a large number of generations (10 000).

Fig. 11. Successors in the simple case with deterministic suc-
cession rule.

The most uniform representation of the Pareto set is ob-
tained by deterministic method, though the required com-
puting time is rather large. Among other methods, simple
ranking method gives the least uniform representation – as
can be expected since it favours individuals on the edge
of Pareto set. For further experiments, either the roulette
method (giving shortest computing time) or the determin-
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Fig. 12. Successors obtained by a roulette method in the simple
case – the tournament method gives similar results.

istic method (ensuring uniform representation), were typi-
cally used. We will show later that performance of ranking
succession method can be considerably improved if a more
sophisticated ranking method is used.

2.10. Accuracy of representing Pareto set

When analysing more complicated Pareto sets than the sim-
plest example presented before, it was observed that evolu-
tionary algorithms do not converge precisely to the actual
Pareto set. In a sense, this phenomenon is obvious: due to
mutation necessary for evolutionary behaviour, only a few
individuals come precisely to the Pareto set; most of them
are oscillating just “below” the Pareto set. Even if obvious,
this aspect was not sufficiently stressed and analysed in the
literature. We give here results of investigating – in some
cases for quite a long time with up to 30 000 generations –
a simple example with known Pareto set, obtained by linear
vector optimisation:

maxxj ; j = 0; : : : ; i ;

i
∑
j=0

xj � 1;

xj � 0; j = 0; : : : ; i : (12)

We see that for the investigated example with i = 2, the av-
erage distance form the Pareto set oscillates about 4 �10�3

(actually, 3:76�10�3) after only 200 generations (Fig. 13).
Naturally, this value depends on the limit values for de-
creasing the dispersion parameter σ . This is because the
oscillation of the distance from the Pareto set results from
recombination and (predominantly) the mutation operation.
Even if the original population were situated precisely on
the Pareto set, mutation would put successors “below” this
set, as illustrated by the following simple example (Fig. 14).

Fig. 13. Average distance from Pareto set for the example defined
by Eq. (12) (i = 2; µ = 100; λ = 100; r = 0:01).

Fig. 14. Population on Pareto set (a), successor population after
recombination and mutation (b) the same after succession (c).

We could of course force the algorithm to converge to the
precise Pareto set, if we decided to decrease the mutation
effect through decreasing dispersion parameter σ to zero.
This would result, however, in losing exploratory powers
of the evolutionary algorithm, considered a degeneration
of the algorithm. Precise dependence of accuracy of ap-
proximating Pareto sets on the limit values of dispersion
parameters requires further detailed study.

3. Use of reference points and
achievement functions in evolutionary

algorithms

A powerful and practical way of making vector optimi-
sation algorithms interactive is to combine them with the
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concepts of reference points and to use order-preserving
achievement functions [11]. We will investigate here, how
to combine these concepts with evolutionary algorithms in
order to either make them more interactive or to eliminate
other deficiencies.

3.1. Segments of Pareto sets dominating a reference
point

In interactive analysis of Pareto sets, it might be interesting
to approximate a part of Pareto set “above” a given reser-
vation point qres – see the example shown in Fig. 15. We
have to add constraints:

f (x)� gres
i ; i = 1; : : : ;k1 (for maximised criteria) ;

f (x) � gres
i ; i = k1+1; : : : ;k (for minimised ones) : (13)

Fig. 15. A part of Pareto set above a given reservation
point (0, 24, 0).

Provided that the resulting problem is feasible (the reserva-
tion point is not “above” Pareto set), specifying such addi-
tional requirement does not complicate the evolutionary al-
gorithm. Additional constraints are simple and can be taken
into account as selection conditions. We can also achieve
a better approximation accuracy if the reservation point lies
close to Pareto set. For the relatively simple examples of
Pareto sets considered here, the necessary computational
effort does not diminish, however: approximating a part of
Pareto set is as expensive as approximating the entire set.
On the other hand, the necessary computational effort is
reasonable for simple examples. Interactive investigation
by approximating first entire Pareto set, and approximating
selected parts of it more precisely later is possible.

3.2. Using achievement functions for better ranking
and for improving the accuracy of representing
Pareto set

Ranking Pareto in evolutionary algorithms can be modi-
fied by using an order-consistent achievement function (see
also [11]), e.g.:

σ(q; q) = min
1�i�m

σi(qi ;qi)+ ε
m

∑
i=1

σi(qi ;qi) ; (14)

where q is a reference point in criteria space. The partial
achievement functions can be defined for a simple case as
follows:

σi(qi ;qi) =
qi�qi

qU
i �qN

i
(for maximised criteria);

σi(qi ;qi) =
qi�qi

qN
i �qU

i
(for minimised ones); (15)

where qU and qN are utopia and nadir point vectors or their
approximations, respectively. Modification of Pareto rank-
ing is based on the following property of the achievement
function:

q2Q0 )

(
maxq2Q0

σ(q;q)� 0bq= argmaxq2Q0
σ(q;q)� q

)
: (16)

Thus, the value σ(q;q) greater than 0 indicates (approxi-
mately), that point q dominates the reference point q. The
value 0 of the achievement functions indicates that point q is
either equal or (approximately) equivalent to q. Because of
these properties, the Pareto rank of an individual can be
determined by:

rank(t)
j

= 1+
Sj

∑
k=1

σ(qk;qj) ; (17)

where qk are individuals dominating qj , thus σ(qk;qJ)� 0,
and Sj is the number of individuals dominating qj . This
way of ranking takes into account both distance of a given
point from Pareto frontier and number of points dominating
given point. The disadvantage is that estimation of utopia
and nadir points must be available to construct the achieve-
ment function, hence this ranking method cannot be used
when approximating Pareto set for the first time. It is appli-
cable only to further, interactive analysis of selected parts
of Pareto set.
Despite such drawback, the ranking method based on
achievement function values has several advantages. It is
more sensitive than the classical Golberg ranking method
and the Fonseca and Fleming method, which can be illus-
trated by the simple example (Fig. 16).
Another, more practical advantage of Pareto ranking using
achievement function values is that it might improve the ac-
curacy of the entire evolutionary algorithm. We have seen
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Fig. 16. Example of ranking values obtained by (1st value)
Goldberg method; (2nd value) Fonseca and Flemming method;
(3th value) by using achievement function values.

before that ranking methods did not behave well as suc-
cession mechanisms. A ranking method using achievement
function values can perform much better: we can increase
the accuracy of the entire evolutionary algorithm by in-
creasing the value of the parameter ε , as suggested by the
computation results shown in Table 2.

Table 2
Average distance from Pareto set after 30 000 generations
depending on the parameter ε (i = 2; µ = 100; r = 0:01)

ε 0 0.01 0.1 1 10 100
Average distance
from Pareto set 3.82 3.88 3.88 1.18 0.19 0.00012
[�10�3]

We see that, using evolutionary algorithm interactively for
more precise investigation of a part of Pareto set, we could
actually obtain much better accuracy or use much shorter
computation times for a ranking method based on achieve-
ment function values. On the other hand, very large values
of ε (say, changing it from 10 to 100) mean only increasing
the absolute value of achievement function, not its charac-
ter that is dominated then by its linear part. This suggests
that similar results would be obtained when using a slightly
different form of the ranking formula:

rank(t)
j

= 1+β
SJ

∑
k=1

σ(qk; qj) ; (18)

while increasing the parameter β over its initial value 1.

Thus, use of ranking values based on achievement functions
not only increases flexibility of ranking, but also results in
much better accuracy of approximating Pareto set.

3.3. Neutral compromise points and their
neighbourhoods

Given a reservation point qres and an aspiration point qasp

in criteria value space, we can define a relative neutral com-
promise point as a point in Pareto set in criteria space being
closest to the line joining points qres and qasp (Fig. 17).

Fig. 17. Example of Pareto set with a reservation, aspiration and
a relative neutral compromise points shown.

This point can be obtained by optimising the achievement
function σ(q; q) of the form (14) with partial achievement
functions defined e.g. as follows:

σi(qi ; qi) =
qi�qasp;i

qasp;i�qres;i
(for maximised criteria);

σi(qi ; qi) =
qasp;i�qi

qres;i�qasp;i
(for minimised ones): (19)

For more sophisticated forms of partial achievement func-
tions see e.g. [11]. In evolutionary algorithms, we can use
the achievement function σ(q; q) as a fitness measure and
thus optimise it.

This results in interactive modification of evolutionary al-
gorithms for vector optimisation: the user defines the aspi-
ration and reservation points, the algorithms responds with
the relative neutral compromise point or its approximation
by a population of points (Table 3). This idea is illustrated
by the following example. For the vector optimisation prob-
lem defined by Eq. (5), we define reservation and aspiration
points as in Fig. 17. The line joining points qres and qasp
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Fig. 18. The approximation of the relative neutral compromise point for the example from Fig. 17. Approximation cloud depending
on generation number (a) n= 5; (b) n= 10; (c) n= 15; (d) n= 30 (µ = 50; λ = 50).

Table 3
Diameter of approximation cloud depending on

generation number (µ = 50;λ = 50)

Generation number 5 10 20 40 60

∆q1
[�10�3] 1020 850 45.95 1.82 0.07

∆q2
[�10�3] 10640 9230 91.35 3.63 0.16

does not intersect Pareto set, but this makes the example
more interesting. An evolutionary algorithm with achieve-
ment function used as a fitness measure produces a popu-
lation approximating the relative neutral compromise point
(2, 29) in the criteria space at first, and soon converges to
this point (Fig. 18).

3.4. Parameterisation of representing Pareto set or its
segment

The approach discussed above can be further parameterised
combining a niched method with ranking based on achieve-
ment function. The niched method was originally used to
provide a uniform representation of Pareto set in a global
approach; here we use it to parameterise a local approach.
Size of the niche can be related to e.g. the distance between
aspiration and reservation points. Use of the niched method
results in broadening the dispersion of a population around
a neutral compromise point, as illustrated in Fig. 19.
We conclude that the evolutionary algorithms of vector op-
timisation, though traditionally understood as global and
having non-interactive, batch character, can nevertheless be
localised and used as local tools of interactive multiple cri-
teria analysis.
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Fig. 19. Dispersion around the relative neutral compromise point
for the example from Fig. 17, resulting from a niched approach
with niche size equal to 10% of the range between aspiration and
reservation points (population size 50, 200 generations).

4. Estimation of utopia and nadir points
in evolutionary algorithms

4.1. Definitions and classical computations of utopia and
nadir points

We recall that the utopia point qU is defined as the “low-
est” point dominating entire outcome set Q0 (and thus en-
tire Pareto set bQ0) in criteria value space. In other words,
if some criteria are maximised and other minimised, we
define:

qU
i = max

x2X0

fi(x); i = 1; : : : ;k1

(for maximised criteria) ;

qU
i = min

x2X0

fi(x); i = k1+1; : : : ;k

(for minimised criteria) ; (20)

where fi(x) are criteria functions, k is the number of them
(while k1 is the number of maximised criteria), X0 is the
set of admissible decisions and Q0 = f (X0) is the outcome
set of attainable criteria vectors.

The nadir point is defined as the “highest” point in criteria
value space dominated by the entire Pareto set bQ0 – and
not necessarily the entire outcome set Q0. This difference
explains the difficulty (see e.g. [9]) of precisely calculating
the nadir point, since we must perform necessary compu-
tations not over entire X0 or Q0, but over their efficient

subsets bX0 or bQ0. Thus, if some criteria are maximised and
other minimised, we define:

qN
i = min

x2bX0

fi(x) = min
q2 bQ0

qi ; i = 1; : : : ;k1

(for maximised criteria) ;

qN
i = max

x2bX0

fi(x) = max
q2 bQ0

qi ; i = k1+1; : : : ;k

(for minimised criteria) : (21)

We cannot replace bQ0 with Q0 in the equation above, be-
cause this might lead to nadir estimation much lower than
actual values. On the other hand, computation of precise
value of the nadir point is very difficult when using clas-
sical methods. There are many methods that approximate
nadir point components; the simplest of them is based on
using only results of computations related to determining
utopia components as in (20) and selecting the worst crite-
ria values encountered during these computations:

qU
i = max

x2X0

fi(x); bqi = argmaxfi(x); i = 1; : : : ;k1

(for maximised criteria) ;

qU
i = min

x2X0

fi(x); bqi = argminfi(x); i = k1+1; : : : ;k

(for minimised criteria) ;

qN
i = min

1� j�k
bqj

i ; i = 1; : : : ;k1(for maximised criteria) ;

qN
i = max

1� j�k
bqj

i ; i=k1+1; : : : ;k (for minimised criteria) ; (22)

where qj denotes the jth component of vector q. This
method is accurate if k= 2, for bi-criteria problems. How-
ever, in other cases it usually gives too optimistic estima-
tions of the nadir value.
Matthias Ehrgott and Dagmar Tenfelde-Podehl [9] have
proposed an algorithm computing the nadir point for three
(or more) criteria by determining the Pareto sets for (each
possible pair of) two criteria. For these bi-criteria Pareto
sets, the values of the third missing criterion are attached,
the resultant three-dimensional vectors are collected in one
set, dominated results deleted, and the nadir values are di-
rectly computed from the resulting approximation of Pareto
set.

4.2. Evolutionary algorithms and utopia and nadir points

Although the literature on evolutionary and genetic al-
gorithms for vector optimisation is rather rich, it is fo-
cused more on the algorithms details than on their use for
analysing Pareto set. Thus, an obvious fact was practi-
cally overlooked: since we approximate entire Pareto set
by an evolutionary algorithm, the computations of utopia
and nadir points should be much more easy than when us-
ing classical vector optimisation algorithms and should be
actually by-products of the evolutionary algorithm applied.
The questions that should be investigated are “only” how to
provide for necessary accuracy of estimating these points –
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especially the nadir point – while limiting the computa-
tional effort necessary for this estimation. We shall show
on an example that these questions are by no means trivial.

We consider a slightly modified example from [3]:

maximise :f1(x) = 100�7x1�20x2�9x3

maximise :f2(x) = 4x1+5x2+3x3

maximise :f3(x) = x3

11
2x1+x2+13

5x3 � 9

x1+2x2+x3� 10

xi � 0; i = 1;2;3: (23)

The set of admissible decisions X0 is illustrated by Fig. 20.

Fig. 20. Set of admissible decisions X0 for the example defined
by Eq. (23).

The set of admissible decisions X0 is determined by its
corner points:n

P0= (0;0;0); P1= (6;0;0);

P2= (0;5;0); P3=
�
0;0;55

8

�
;

P4= (4;3;0); P5=
�
0;3 2

11;3 7
11

�o
:

Following the transformation q = f (x) determined by
Eq. (23), we can define also the corresponding corner points
of the set of attainable criteria values Q0 (Fig. 21). By di-
rect examination, we can eliminate some of them as not
belonging to Pareto set.
We can show in this way that the Pareto set is composed
of surfaces determined by the following points in criteria
space: n

P0= (100;0;0); P1= (58;24;0);

P3=
�
493

8;167
8;55

8

�o
andn

P1=
�
58;24;0); P3=

�
493

8;167
8;55

8

�
;

P4= (12;31;0); P5=
�
3 7

11;26 9
11;3 7

11

�o
:

By direct examination, we can find for these points
the utopia point qU =

�
100;31;55

8

�
and the nadir point

qN =
�
3 7

11;0;0
�
. Now we shall show the results of com-

puting these points via three variants of evolutionary algo-
rithms.

Fig. 21. The set of attainable criteria values Q0 for the example
defined by Eq. (23).

I. Evolutionary computations of utopia point with
utopia based nadir approximations

The first variant uses direct determination – see Eq. (19) –
of utopia point for an evolutionary approximation of
a Pareto set and an indirect – see Eq. (21) approxima-
tion of the nadir point based on the data obtained in
utopia point determination. An evolutionary algorithm with
(µ ;λ ) = (200;100) and 200 generations gave the following
results:

qU
1 = (100; 0; 0)

qU
2 = (11:9998; 30:9999; 0)) qU = (100; 30:9999; 5:625)

qU
3 = (49:375; 16:875; 5:625)

with the corresponding quite inaccurate nadir approxima-
tion qN = (11:9998; 0; 0). By increasing the computing ef-
fort (measured below as the number of new computations
of criteria values, because this, rather than organisation of
the algorithm determines the computational effort) we can
increase the accuracy of utopia approximations, but accu-
racy of nadir approximations remains inadequate, as shown
in Table 4. Thus, we conclude that this method of nadir
approximations is not worth using with evolutionary algo-
rithms.
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Table 4
Results of utopia and nadir point approximation

by method I

The number of

new computations

of criteria values

Nadir point

approximation

Utopia point

approximation

30 000 (12.06; 0; 0) (100.0; 30.79; 5.617)

60 000 (11.97; 0; 0) (100.0; 30.95; 5.624)

120 000 (12.00; 0; 0) (100.0; 31.00; 5.625)

II. Evolutionary computations of utopia point and nadir
point

Since an evolutionary algorithm approximates entire Pareto
set, we can also simply determine utopia and nadir points
directly, according to their definitions, for the subsequent
evolutionary approximations of Pareto set (Fig. 22). This
simple method needs not, however, be the best, since a uni-
form approximation of Pareto set does not necessarily cover
well the remote corners of this set, which are responsible
for utopia and nadir points.

Fig. 22. Approximation of the Pareto set for the example defined
by Eq. (23).

Thus, an evolutionary algorithm for vector optimisation
must be modified in order to provide for a good approxi-
mation of utopia point and particularly the nadir point. It is
necessary to increase fitness indicators for individuals with
extreme values of criteria components.

Theoretically, such a method should give good approxima-
tions of Pareto set together with its utopia and nadir points.
However, practical applications show that good approxima-

tions of the nadir point remain difficult to obtain. This is
illustrated by results (Table 5) of an evolutionary algorithm
with direct determination of nadir point for Pareto set ap-
proximations in subsequent iterations, with a modification
of fitness indicators for individuals with extreme values of
criteria vectors components. We observe that accuracy of
the nadir point approximation, although much better than
in method I, still remains inadequate even after very long
computations.

Table 5
Results of nadir point approximation by method II

The number of new

computations

of criteria values

Nadir point

approximation

Arbitrary starting population

30 000 (6.78; 0; 0)

60 000 (5.90; 0; 0)

120 000 (5.91; 0; 0)

Starting population containing individuals

responsible for utopia point

30 000 (5.38; 0; 0)

60 000 (5.24; 0; 0)

120 000 (5.06; 0; 0)

III. Evolutionary approximations of Pareto sets for
smaller number of criteria

The method proposed by Ehrgott and Tenfelde-Podehl [9]
was not developed as an evolutionary algorithm, but can be
easily combined with evolutionary approaches, involving
the following steps:

– for each pair of criteria, Pareto sets are be approxi-
mated by using an evolutionary algorithm;

– for each individual in these approximations, the cor-
responding values of other criteria are computed;

– results obtained this way are combined and domi-
nated points deleted, resulting in an approximation
of Pareto set for the original problem;

– utopia and nadir points are computed according to
their definitions for this approximation of Pareto set.

The advantage of this method over method II is that approx-
imation of Pareto sets for bi-criteria problems in a natural
way provides for more attention paid to extreme values of
criteria components.

We illustrate the working of this method by showing the
results of such approximations obtained by using an evo-
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Fig. 23. Approximation of Pareto set for criteria 1 and 2 (a) with three-dimensional presentation (b).

Fig. 24. Approximation of Pareto set for criteria 1 and 3 (a) with three-dimensional presentation (b).

lutionary algorithm with (µ ;λ ) = (200; 100); 200 genera-
tions and alternative niche diameters 4,75; 1,55; 0,28) –
see Figs. 23–25.

This way, after a large number (360 000) of computations
of new criteria vectors, the following approximations were
obtained: utopia point qU = (100; 30:999; 5:625) and nadir
point qN = (4:36; 0; 0). We see that nadir point approxi-
mation, though much better than in other methods, still
remains inadequate. Moreover, method III requires more

computations (three times in this case) than methods II
and I, and a fair way of comparing them is to compare nadir
approximations after the same number of computations of
new criteria vectors. Such a comparison is presented in
Table 6.

When we compare the results of these three methods,
we see that method III is most promising. The exam-
ple defined by Eq. (23) might be especially difficult for
nadir point approximation, hence we tried another variant
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Fig. 25. Approximation of Pareto set for criteria 2 and 3 (a) with three-dimensional presentation (b).

Fig. 26. Pareto sets for criteria 1 and 2 (a) or for criteria 1 and 3 (b), for example defined by Eq. (24).

Table 6
Results of nadir point approximation by method III

Number of new
computations

of criteria vectors

Nadir point
approximation

30 000 (5.01; 0; 0)
60 000 (4.67; 0; 0)

120 000 (4.78; 0; 0)

of this example, at the same time testing the possibility of
generalising method III for a larger number of criteria.

The original example from [3] is as follows:

minimise : f1(x) = 9x1+191
2x2+71

2x3

minimise : f2(x) = 7x1+20x2+9x3

maximise :f3(x) = 4x1+5x2+3x3

maximise :f4(x) = x3

11
2x1+x2+13

5x3 � 9

x1+2x2+x3� 10

xi � 0; i = 1; 2; 3: (24)

The set of admissible decisions X0 is the same as in the
example defined by Eq. (23) – see Fig. 20. However,
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Fig. 27. Pareto sets for criteria 1 and 4 (a) or for criteria 2 and 3 (b), for example defined by Eq. (24).

Fig. 28. Pareto sets for criteria 2 and 4 (a) or for criteria 3 and 4 (b), for example defined by Eq. (24).

utopia and particularly nadir points change with each
change of criteria and they are here qU =

�
0; 0; 31; 55

8

�
and qN =

�
941

2; 96 4
11; 0; 0

�
. The Pareto sets for consecu-

tive bi-criteria problems are shown in Figs. 26–28.

Utopia and nadir points obtained using evolu-
tionary algorithm with (µ ; λ ) = (200;100) and
200 generations, and a version of method III
for four criteria: qU = (0; 0; 30:999; 5:625) and
qN = (94:4998; 95:8747; 0; 0). Although the actual num-
ber of criteria value computations here increased 6 times
(this is the drawback of using method III), we have
obtained quite acceptable approximation of utopia and
nadir points in this example.

5. Conclusions and future research

We shall point out only few conclusions, in particular those
concerning future research:

� Although there is a very rich literature on evolution-
ary algorithms for vector optimisation, this literature
focuses mostly on the tool – specific aspects of evo-
lutionary algorithms, much less on the task – specific
issues of vector optimisation, for which an evolution-
ary approach might be helpful.

� When concentrating on the task, evolutionary algo-
rithms might be usefully extended – e.g. to ob-
tain more precise approximations of selected parts
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of Pareto set, or better approximations of utopia and
nadir points of Pareto set.

� In such extensions of evolutionary algorithms, an
essential issue is to make them more interactive
(e.g. first approximating entire Pareto set, then a se-
lected part of it). For interactive extensions of evo-
lutionary algorithms, combining them with reference
point approaches and achievement function concepts
might be useful.

� A particularly difficult issue (not only for evolution-
ary algorithms, but also in entire vector optimisa-
tion) is the determination of nadir points. Clas-
sical evolutionary approaches are not sufficient to
solve this issue. Combinations of evolutionary algo-
rithms with other approaches of vector optimisation
are necessary.

� Many issues outlined in this paper should be treated
as starting points only and require deeper future re-
search. Starting from a different perspective, concen-
trating more on tasks than on tools, the paper serves
only as identification of future research issues.
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