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Abstract — Providing seamless handover is one of the ma-
jor problems in mobile communication environments. Care-
ful dimensioning of the network and the underlying teletraffic
analysis plays a major role in determining the various grade
of services (GoSs) that can be provided at various network
loads for handover users. It has been shown that the chan-
nel holding time of a cell, one of the important parameters in
any teletraffic analysis, can be accurately modelled by Erlang
distributions. This paper focuses on solving queuing systems
with generalised Erlang service distributions and exponential
arrival distributions. We present the quasi-birth-death (QBD)
process, which characterises the queuing models with gener-
alised Erlang service and exponential interarrival distribu-
tions. We then use the properties of Erlang distributions and
characteristics of channel allocation process of cellular net-
works to simplify the queues used to model cellular networks.
The use of these simplifications provide a significant reduction
in computation time required to solve these QBDs.

Keywords — cellular networks, phase-type distributions, gener-
alised Erlang.

1. Introduction

One of the major problems that needs to be addressed
in mobile communication networks is the continuity of
a service during a handover without any data loss, as
the user moves from cell to cell. This is called seam-
less handover [1]. The blocking probability encountered
at handover is an important grade of service parame-
ter for mobile users. It is of utmost importance to care-
fully dimension the network to provide the guaranteed
GoS levels.
The channel holding time of a mobile user is an impor-
tant parameter in the analysis of communication networks.
It was shown in [2] that channel holding time in cellu-
lar networks can be accurately modelled as a generalised
Erlang phase-type distribution. However the resulting queu-
ing models are not tractable using common matrix manipu-
lation techniques. In this paper we propose to use a simpli-
fication technique based on the properties of Erlang distri-
butions and characteristics of channel allocation procedures
in cellular networks to create a tractable queuing model for
cellular networks.
Rest of the paper is organised as follows. Section 2 briefly
describes the proposed QBD processes resulting from the

queuing models associated with the cellular network. This
work has been presented in [2] and has been included here
for completeness. The proposed simplification techniques
are presented in the following section. Matrix equations
that describe the stationary probabilities of the system are
presented in Section 3. Sections 4 and 6 describe the tech-
niques that were used to solve for the blocking probabilities
of the system. We conclude the paper staying that the pro-
posed simplification leads to the creation of standard ma-
trix equation from a seemingly un-tractable queuing sys-
tem. Due to space limitations we only intend to describe
the simplification techniques in this paper. Readers who
are interested in final results from the study should refer
to [2, 3].

2. Queuing model for cellular
network channels

A phase-type (PH) distribution of generalised Erlang form
with 2 phases has been proposed to model channel hold-
ing times in cellular networks [2]. Phase-type distributions
can be used to approximate virtually any renewal process,
with the dimensionality of the phase-type distribution in-
creasing with the complexity of the particular process being
modelled [2, 3]. Furthermore they provide an accurate de-
scription of the channel holding time distribution in cellular
networks, while retaining the underlying Markovian prop-
erties of the distribution. These Markovian properties are
essential in generating tractable queuing models for cellu-
lar networks. The parameters of this distribution can be
estimated from experimental data by using the expectation
maximisation (EM) algorithm [2].
References [2] and [3] describe methods used to derive
the channel holding time distribution for cellular networks
through network simulation models. Use of EM algorithm
to approximate the actual distribution with a generalised Er-
lang distribution with 2 phases is presented in [3] and [4].
Arrivals of new and handover users are modelled with ex-
ponential distributions with appropriate parameters.
Assuming an exponential interarrival distribution and
a phase-type service distribution, a cellular network with
n channels per cell can be modelled as an M=PH=n=n
queue [5]. The resulting queuing system may not be
tractable even for moderate values of n. Equation (1) shows
the rate transition matrix or Q matrix for an M=PH=n=n
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queue, which models a cell with n channels. In Eq. (1) it
can be observed that Q is of block tri-diagonal form [5]:

Q =

2
6666666666666666664

B1 B1 0 0 � � �

B1 A11 A01 0 � � �

0 A22 A12 A02 0

...
. . .

. . .
. . .

...
... A2i A1i A0i

. . .
. . .

. . .

0 A2;n�1 A1;n�1 A0;n�1

0 0 A2;n A1;n

3
7777777777777777775
(1)

Assuming an exponential arrival process with the rate λ
the matrices B0, B1 and B2 are defined as [2, 5]:

B0 = λ τ ; (2)

B1 = λ ; (3)

B2 = t : (4)

Where τ is the initial probability vector of the PH ser-
vice distribution and t is a column vector partition of the
rate transition matrix QPH of the PH distribution, given
in Eq. (5):

QPH =

�
0 0
t T

�
: (5)

The construction of matrices A0i , A1i and A2i for a gen-
eral phase type distribution is rather complex and requires
lengthy and tedious computations. However, we have iden-
tified some properties of generalised Erlang distributions
which simplify these calculations to a great extent. The
next section of this paper describes the proposed simplifica-
tions and algorithms leading to the construction of tractable
Q matrix for the queuing process. We assume the service
distribution given by the following equation throughout the
rest of the paper:

T =

�
�µ1 µ1

0 �µ2

�
: (6)

Row sums for any rate transition matrix are zero [5], re-
sulting in,

t =
�

0
µ2

�
; (7)

where T and t are the partition matrices of QPH as de-
scribes in Eq. (5).

3. M=PH=n=n server with a generalised
Erlang service distribution

In the previous section we selected the M=PH=n=n queue
to model a cell with n channels. A drawback in using the
above model to represent mobile network cells is that the
size of the rate transition matrix depends on the number
of channels available in a cell. As the size of the block
matrix at level i is on order

�i+2
i

�
for a service distribution

of 2 phases [6], the Q matrix becomes unmanageable for
networks with large number of channels available per cell.
Future mobile networks intend to provide a large number of
channels per cell to support the high data rate services that
will be available. Therefore the methods available in [5]
cannot be used to find the blocking probabilities experi-
enced by new and handover users in the mobile network
environment.
A simplification can be made to the Q matrix by observ-
ing some properties of the Erlang distribution and the be-
haviour of servers at mobile cells. In servers with Erlang
distributions, the users always start the service in the first
phase and move on to the next phase with probability 1
once the sojourn in that phase is over. Users who finish
the sojourn in the last phase depart the system. When there
are m users in the system it is irrelevant which of these m
users are at which server and similarly who finishes ser-
vice first. This leads us to combine all the users in the
same service phase to a single server with the service rate
equivalent to the combined rate of all the servers. These
simplifications allow to represent the system with a re-
duced state space. The new state space can be defined as
follows:

fnumber of users is phase 1 (n1),
number of users in phase 2 (n2)g.

Using this simplification and a service distribution of two
phases, the number of different states possible in the sys-
tem when there are m users in the system are given in
Table 1.

Table 1
Allowed states when there are m users in the system

State
Number of users

in phase 1

Number of users

in phase 2

1 m 0

2 m�1 1
...

...
...

M 1 m�1

m+1 0 m

This reduces the size of the matrix at level m to m+ 1.
The whole system can be arranged into two-dimensional
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continuous time Markov chain with the following state
space:

0 no users in the system

(1,0) 1 user in the system

(0,1) 1 user in the system

...
...

(n1;n2) n1+n2 users in the system with n1 users
in phase 1 and n2 users in phase 2

...
...

The events, which change the state of the system and rates
of leaving the current state at those events are shown in
Table 2. Figure 1 shows the transitions listed in Table 2.
The first few states illustrating the construction of the rate
transition matrix, Q, are given in Fig. 2. The rate transi-
tion matrix for the M=PH=n=n QBD process can be con-
structed by observing the transitions between states given
in Figs. 1 and 2, and using Table 2 to get the transition
rates between different states. In order to obtain the char-
acteristic tri-diagonal form of the Q matrix, it is necessary
to perform a linear ordering of the states. In this case it is
the simple ordering f0;(1;0);(0;1);(2;0);(1;1);(0;2); : : : ;
(n;0);(n�1;1); : : : ;(1;n�1);(0;n)g. We can define levels
where level m is the combination of all states when the
number of users in the system are m. This ordering allows
to generate the Q matrix of the form given in Eq. (1).

Table 2
Transition rates between different states

From To Rate Event Range

0 1,0 λ Arrival

(n1;n2) (n1+1;n2) λ Arrival n1 � 1

(n1;n2) (n1;n2�1) n2µ2 Departure n2 � 1

(n1;n2) (n1�1;n2+1) n1µ1 Phase change n1;n2 � 1

Elements of Q correspond to the transition rates for all the
allowed transitions in the queuing system. A rate of zero
means that the particular transition is not allowed in the
system. Q can be divided into several row levels. Row
level i corresponds to the matrices which describe the sys-
tem when there are i users in the system. Matrices A0i , A1i
and A2i make up the ith row level of Q given in Eq. (1).
Similarly the columns can also be divided into different
levels resulting column levels (i�1), i and (i+1) for ma-
trices A0i , A1i and A2i respectively. Therefore matrix A2i
corresponds to the transitions which result in the number
of users in the system being decreased from i to (i �1),
namely departures. Similarly the matrix A1i represents the
transitions which do not change the total number of users
in the system, which corresponds to phase changes and
self transitions in the system. Finally the matrix A0i cor-

Fig. 1. State transitions for M=PH=n=n QBD process.

Fig. 2. First few states of the M=PH=n=n QBD process.

responds to arrivals which increase the number of users
from i to (i +1).

3.1. Creating matrix A2i

It was explained earlier that the Q matrix represents all
the allowed transitions in the system. Furthermore, as ma-
trix A2i is a sub matrix of Q, matrix A2i corresponds to the
all the departures from the system with i users. Assume
that the number of users in phases 1 and 2 are given by n1
and n2 respectively. Then the allowed transitions in ma-
trix A2i are from states of the form (n1; n2) to states of the
form (n1; n2�1). In other words, the transitions that leave
the number of users in phase 1 unchanged while decrease
the number of users in phase 2 by 1. The transition rate
for these transitions are the combined rate of all n2 users in
phase 2, which results in n2µ2 as the appropriate transition
rate. To construct matrix A2i it is necessary to identify all
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the allowed departures from the system with i users and
then calculate the effective rate for these departures. The
following algorithm is used to achieve this by identifying
all the departures from the system with i users. Firstly we
define matrices S1 and S2 as follows:

S1 =

2
66666664

i 0
i�1 1
i�2 2

...
...

1 i�1
0 i

3
77777775

S2 =

2
666664

i�1 0
i�2 1

...
...

1 i�2
0 i�1

3
777775

Matrix Si contains the linearly ordered set of all possible
states with i users in the system, while S2 contains the state
space for system with i�1 users. In matrices S1 and S2
the first and second columns correspond to the number
of users in phase 1 and phase 2 respectively. The two
state spaces S1 and S2 correspond to the state spaces along
rows and columns of A2i respectively. For example, the
transition resulted by a move from first row of S1, fi;0g, to
first row of S2, fi�1;0g, corresponds to the element f1;1g
of matrix A2i . We use the variable row to represent rows
of matrix A2i and variable column to represent columns
of A2i . The algorithm then loops through the elements
of S1 and S2 (effectively compares the transitions formed
by moving from a state in S1 to a state in S2) and identify
which transitions are allowed in the system. For allowed
transitions the transition rate is created and it is entered into
the position frow; columng of A2i . All other transitions are
given a value of zero to represent that they are not allowed
in this system. The algorithm described is given below:

For row= 1 to i +1
For column= 1 to i

If S2 (column; 1) == S1(row; 1)
AND S2(column; 2) == S1(row; 2)�1

A2i(row; column) = S1(column; 2)µ2
Else

A2i(row; column) = 0:0
End If

End columnloop
End row loop

Using the above algorithm A2i (of size (i+1)� i) is calcu-
lated and presented in Eq. (8):

A2i =

2
6666666664

0 � � � � � �
...

µ2

...
... 2µ2

...
...

. . .
...

... � � � � � � iµ2

3
7777777775

(8)

3.2. Creating matrix A0i

The concept used to derive the algorithm described in the
previous section can also be used to derive an algorithm to
calculate A0i . Matrix A0i represents the arrivals into a sys-
tem with i users. Using the previous notations the allowed
transitions in this matrix are from states of the form (n1; n2)
to states of the form (n1+1; n2). Alternatively, the tran-
sitions that increase the number of users in phase 1 by 1,
while leaving the number of users in phase 2 unchanged.
As the arrival rate into the system is independent of number
of users in the system, all transitions have rate λ .
We define matrices S1 and S2 as follows:

S1 =

2
666664

i 0
i�1 1

...
...

1 i�1
0 i

3
777775

S2 =

2
66666664

i +1 0
i 1

i�1 2
...

...
1 i
0 i +1

3
77777775

The notation used here is the same as explained earlier
in Section 3.1. Matrix S1 contains the linearly ordered set
of all possible states with i users in the system while S2
contains the state space for system with i +1 users. Then
the following algorithm can be used to identify the allowed
transitions in A0i . As explained in Section 3.1 this al-
gorithm loops through all the possible transitions in the
system by traversing through the state spaces of S1 and S2
and finds the transitions allowed for this particular queuing
model:

For row= 1 to i +1
For column= 1 to i +2

If S2 (column; 1) == S1(row; 1)+1
AND S2(column; 2) == S1(row; 2)

A0i(row; column) = λ
Else

A0i(row; column) = 0:0
End If

End columnloop
End row loop

Using this algorithm matrix A0i (of size (i +1)� (i +2) )
can be given as follows:

A0i =

2
6664

λ 0 � � �
...

0
. . .

...
... 0 λ 0

3
7775 (9)

3.3. Creating matrix A1i

Matrix A1i represents all the transitions which do not
change the number of users, i, in the system, namely the
phase changes and the self-transitions. Using the previous
notations, the allowed transitions in this matrix are from
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states (n1; n2) to (n1�1; n2+1) (phase changes) and from
(n1; n2) to (n1; n2) (self-transitions). The rate for the phase
transitions are given by the combined rate of n1users in the
first phase before the transitions. The self-transition rates
can be found easily by observing that all the row sums are
zero for any Q matrix [5].
The following algorithm can be used to create all the el-
ements except the diagonal elements of A1i . The diagonal
elements are initially given zero in this algorithm. Then
the correct diagonal elements become the negative of row
sums of the Q matrix as the row sums are zero for any
rate transition matrix. We define matrices S1 and S2 as fol-
lows to obtain all the elements except the diagonal elements
of A1i :

S1 = S2 =

2
666664

i 0
i�1 1

...
...

1 i�1
0 i

3
777775

Matrix S1 and S2 contain the linearly ordered set of all
possible states with i users in the system. Then we can use
the following procedure to derive A1i :

For row= 1 to i +1
For column= 1 to i +1

If S2 (column; 1) == S1(row; 1)�1
AND S2(column; 2) == S1(row; 2)+1

A1i(row; column) = S1(row; 1)µ1
Else

A1i(row; column) = 0:0
End If

End columnloop
End row loop

The diagonal elements are given by:

�

�
∑
row

A0i +∑
row

A1i +∑
row

A2i

�
;

where ∑
row

represents the row sum of the particular matrix.

A1i (of size i +1)� (i +1) ) is given in Eq. (10):

A2i =

2
66666666666664

�ζ0 iµ1 0 � � � � � �
...

0 �ζ1 (i�1)µ1
... 0

. . .
. . .

�ζk (i�k)µ1

...
. . .

. . . 0
�ζi�1 µ1

... � � � ζi

3
77777777777775
(10)

where for k= 0; 1; : : : ; i

ζk = λ +(i�k)µ1+kµ2 : (11)

However, due to the extra boundary condition present when
the number of users in the system is equal to the number
of servers, ζk’s for k = 0; 1; : : : ; n in the matrix A1n have
to be modified as follows:

ζk = (i�k)µ1+kµ2 : (12)

4. Stationary probabilities
of the system

Sections 3.1–3.3 explained how to create all the sub ma-
trices required to generate the rate transition matrix rep-
resenting the M=PH=n=n QBD process with generalised
Erlang service distribution. The objective of this study is
to analyse the performance of a cellular network, focusing
on the blocking probabilities for handover and new users as
the main performance analysis parameter. To calculate the
blocking probabilities, it is necessary to find the stationary
probabilities of the system. In other words the probability
of having i users in the system, with i ranging from 0 to n,
need to be found. The phase-type service distribution in-
troduces i +1 substates within each of these i states. In
this section we will present methods to calculate the sta-
tionary probabilities corresponding to all the sub states and
then show how we can combine these sub state stationary
probabilities to calculate the probability of finding i users
in the system at any instance.
The relationship between the stationary or equilibrium
probabilities and the rate transition matrix for a time-
homogeneous continuous time Markov chain (CTMC) is
given by Eq. (13). It has been shown in [5] that Eq. (13)
is valid for a wide variety of systems involving phase-
type distributions. The stationary distribution vector,
x = [x1; x2; : : : ; xSn+1

] of the M=PH=n=n queuing system
satisfies the following equations:

xQ = 0; xi � 0;
Sn+1

∑
i=1

xi = 1; (13)

xP= x; xi � 0;
Sn+1

∑
i=1

xi = 1: (14)

Where P= Q+ I is a stochastic matrix and I is an identity
matrix. The blocking probability of the system (i.e., the
probability that a new user joining the system finds all the
channels occupied) is given by the following equation1:

Pblock=

Sn+1

∑
j=Sn+1

xj : (15)

1State space of a queue with a single-phase service distribution can be
expressed as the number of users at service. With a 2 phase generalised
Erlang service distribution the state space of the resulting QBD process
is 2 dimensional and can be expressed as fnumber of users in service
phase 1, number of users in service phase 2g. Therefore the probability
of having j users in the system is calculated by adding all the sub states
such that,

number of users in phase 1 + number of users in phase 2= j .
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For small values of n, Eq. (14) can be solved by find-
ing an eigenvector of PT associated with unit eigenvalue
and then normalising it such that the sum of the entries of
the normalised eigenvector equals one. This method be-
comes computationally very expensive even for moderate
values of n.

5. Stochastic complementation

Stochastic complementation provides a computationally
cheaper mechanism to solve Eq. (14) by decoupling an irre-
ducible large Markov chain into smaller irreducible Markov
chains [7, 8]. Reference [8] states that an irreducible large
Markov chain P with m states can be uncoupled into k
smaller chains, say C1; C2; : : : ; Ck, containing r1; r2; : : : ; rk
states, where ∑k

i=1 ri = m. It further states that it is possi-
ble to determine the solutions for these smaller chains, sis,
completely independent of each other. Therefore instead
of solving the larger matrix a number of smaller matrices
can be solved. Solutions of these smaller chains can then
be combined appropriately to generate the solution for the
larger system.
A divide-and-conquer approach can be used to system-
atically simplify the system until the individual matrices
become small enough to solve directly. The Sn+1�Sn+1
matrix P can be partitioned roughly in half as given in
Eq. (16):

P=

�
P11 P12
P21 P22

�
(16)

From this partition two stochastic complements of P, S11
and S22 can be derived as follows:

S11 = P11+P12(I �P22)
�1P21; (17)

S21 = P22+P21(I �P11)
�1P21: (18)

These are each irreducible stochastic matrices of order ap-
proximately Sn+1=2, and the combination of S11 and S22
is equivalent to the irreducible Markov chain P [8]. The
most time consuming operation in calculating S11 and S22
is the inversion of matrices of size Sn+1=2, which is far
simpler than solving for eigen vectors of a square matrix
of size Sn+1.
If S11 and S22 are small enough to be solved directly
(through eigen vectors) then the solutions of S11 and S22,
s1;s2, can be combined to generate the solution for P, in
terms of the coupling factors, ε1ε2 between the two matri-
ces [8]. Where

ε1 =
s2P21e

s1P12e+s2P21e
; (19)

ε2 =
s1P12e

s1P12e+s2P21e
: (20)

Then the solution for P, x, is given by

x =
�
ε1s1 ε2s2

�
: (21)

Where s1 and s2 are the stationary distribution vectors
for S11 and S22 respectively, and e is a column vector
of ones. If the matrices S11 and S22 are too large to
solve for s1 and s2 directly, they are roughly parti-
tioned in half again to get four stochastic complements,
(S11)11;(S11)22;(S22)11(S22)22. Size of these stochastic
complements is approximately sn+1=4. This process can
be continued until the resulting stochastic complements are
small enough to be solved using a direct method.
Once the stochastic complements are solved using a direct
method coupling factors for that level can be found using
Eqs. (19) and (20). Then the coupling factors and solution
for that level are combined to get the solutions for the ma-
trices at the level above using Eq. (21). This combination
process at each level continues until the solution for P is
obtained.
Once the stationary probabilities of the system, x, have
been obtained such that x:e= 1, where e is a column vector
of 1’s, we can find the probability of having i users in the
system p(i) as follows:

p(0) = x(1)

p(i) =
Si+1+i

∑
j=Si+1

x(i) for i � 1 : (22)

If the system does not distinguish between new and han-
dover users no priority will be given to one class over the
other. In such a system the blocking probability for any
user, Pblock, will be given by

Pblock = p(n) (23)

and the average load of the system, L, at this blocking
probability is given by:

L =
n

∑
i=1

ip(i) : (24)

6. Conclusions

Accurate methods have been derived to model cellular net-
works in recent times [9, 10]. However due to their com-
plexity, these model do not result in tractable queuing sys-
tems. In [2] we proposed to model the channel holding
time in cellular networks with a 2 phase generalised Erlang
distribution. We showed that this distribution accurately
approximates the distribution of channel holding time in
a cellular network. In this paper we used some properties
of the generalised Erlang distribution to derive a simpli-
fied queuing system to model the collective channels of
a cell in cellular networks. These simplifications enabled
us to derive a tractable queuing model from a seemingly
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untractable QBD. We then presented the methods used to
calculate the blocking probabilities for handover and new
users. Due to space limitations of the paper, we only pre-
sented the simplification techniques we used in this study
that can be applied to similar problems. Interested readers
should refer to [2] and [3] for final results.
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