Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present a number of applications of Hadamard matrices to signal processing, optical multiplexing, error correction coding, and design and analysis of statistics.
Rocznik
Tom
Strony
3--10
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Department of Mathematics, National Technical University of Athens, Athens, Greece
autor
- Department of Mathematics National Technical University of Athens Zografou 15773, Athens, Greece
autor
- School of IT and Computer Science University of Wollongong Wollongong, NSW, 2522 Australia
Bibliografia
- [1] W. T. Federer, A. Hedayat, E. T. Parker, B. L. Raktoe, E. Seiden, and R. J. Turyn, “Some techniques for constructing mutually orthogonal latin squares”, MRC Technical Summary Report no. 1030, Mathematics Research Centre University of Wisconsin, June 1971. (A preliminary version of this report appeared in the proceedings of the Fifteenth Conference on the Design of Experiments in Army Research Development and Testing, ARO-D Report 70-2, July 1970, The Office of Chief of Research and Development, Durham, North Carolina).
- [2] W. T. Federer, “On the existence and construction of a complete set of orthogonal F(4t;2t; 2t)-squares”, Paper no. BU-564-M in the Biometrics Unit Mimeo Series, Department of Plant Breeding and Biometry, Cornell University, Ithica, New York, 14853, 1975.
- [3] A. V. Geramita and J. Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices. New York-Basel: Marcel Dekker, 1979.
- [4] J. Hadamard, “Resolution d’une question relative aux determinants”, Bull. Sci. Math., vol. 17, pp. 240–246, 1993.
- [5] A. Hedayat, “On the theory of the existence, non-existence and the construction of mutually orthogonal F-squares and latin squares”. Ph.D. dissertation, Cornell University, June 1969.
- [6] A. Hedayat and E. Seiden, “F-square and orthogonal F-square design: A generalization of Latin square and orthogonal Latin squares design”, Ann. Math. Stat., vol. 41, pp. 2035–2044, 1970.
- [7] C. Koukouvinos and J. Seberry, “New weighing matrices and orthogonal designs constructed using two sequences with zero autocorrelation function – a review”, J. Stat. Plan. Infer., vol. 81, pp. 153–182, 1999.
- [8] J. Kiefer, “Construction and optimality of generalized Youden designs”, in: Statistical Design and Linear Models, J. N. Srivastava, Ed. Amsterdam: North-Holland, 1975, pp. 333–353.
- [9] A. W. Lam and S. Tantaratana, “Theory and applications of spread-spectrum systems”, IEEE/EAB Self-Study Course, IEEE Inc., Piscataway, 1994.
- [10] V. I. Levenshtein, “A new lower bound on aperiodic crosscorrelation of binary codes”, in 4th Int. Symp. Commun. Theory & Appl., ISCTA’97, 1997, pp. 147–149.
- [11] J. P. Mandeli, “Complete sets of orthogonal F-squares”. M.Sc. thesis, Cornell University, Aug. 1975.
- [12] I. Oppermann and B. S. Vucetic, “Complex spreading sequences with a wide range of correlation properties”, IEEE Trans. Commun., vol. 45, pp. 365–375, 1997.
- [13] R. L. Plackett and J. P. Burman, “The design of optimum multifactorial experiments”, Biometrika, vol. 33, pp. 305–325, 1946.
- [14] J. Seberry and R. Craigen, “Orthogonal designs”, in Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz, Eds. CRC Press, 1996, pp. 400–406.
- [15] J. Seberry, B. J. Wysocki, and T. A. Wysocki, “Golay sequences for DS CDMA applications”, in Sixth Int. Symp. DSP Commun. Syst. DSPCS’02, Manly, TITR, Wollongong, Jan. 2002, pp. 103–108.
- [16] J. Seberry and M. Yamada, “Hadamard matrices, sequences and designs”, in Contemporary Design Theory – a Collection of Surveys, D. J. Stinson and J. Dinitz, Eds. Wiley, 1992, pp. 431–560.
- [17] J. J. Sylvester, “Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tesselated pavements in two or more colours, with applications to Newton’s rule, ornamental tile-work, and the theory of numbers”, Phil. Mag., vol. 34, pp. 461–475, 1967.
- [18] L. R. Welch, “Lower bounds on the maximum cross-correlation of signals”, IEEE Trans. Inform. Theory, vol. 20, pp. 397–399, 1974.
- [19] J. Seberry Wallis, “Part IV of combinatorics: Room squares, sumfree sets and Hadamard matrices”, Lecture Notes in Mathematics, W. D. Wallis, A. Penfold Street, and J. Seberry Wallis, Eds. Berlin-Heidelberg-New York: Springer, 1972, vol. 292.
- [20] C. F. J. Wu and M. Hamada, Experiments, Planning, Analysis, and Parameter Design Optimization. New York: Wiley, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0021-0017