PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimum approximation of high-order systems by low-order model with respect to the minimax objective function

Autorzy
Identyfikatory
Warianty tytułu
PL
Optymalna aproksymacja systemów wysokiego rzędu za pomocą modelu rzędu niskiego ze względu na minimax założonego kryterium błędu
Języki publikacji
EN
Abstrakty
EN
The paper presents a method of low-order optimum model determination for high-order systems, which minimises the maximum value of the objective function for a given order of a model. The method consists of two parts. In the first part an input signal is determined that maximises the assumed objective function defined on the difference between the system and model responses. In the second part, the optimisation of the low-order model parameters is performed, achieving a minimum value of the objective function for the input signal determined earlier. The main advantage of this method is that by using signals that maximise the assumed objective function during the optimisation process, the minimised value is made independent of the dynamic signals, which could occur at the input of the real system. As an example of the application of this method the optimum second-order model of a six-order system obtained for two different input signals and integral-square-error criterion as an objective function. In the case of the first signal there was only one constraint concerning its magnitude applied, whereas the other signal was matched to the dynamic behaviour of the high-order system, and two constraints on the magnitude and the rate of change were imposed.
PL
Artykuł przedstawia metodę wyznaczania optymalnego modelu niskiego rzędu odwzorowującego system rzędu wysokiego w sensie minimax założonego kryterium błęu. Metoda składa się z dwóch etapów. W pierwszym wyznacza się sygnał maksymalizujący założone kryterium błędu definiowanego na różnicy odpowiedzi modelu i systemu, natomiast w drugim etapie, za pomocą uprzednio wyznaczonego sygnału, optymalizuje się parametry modelu niskiego rzędu na minimum wartości przyjętego kryterium. Zaleta przedstawionej metody polega na tym, że zminimalizowana przez optymalny model maksymalna wartość błędu jest obowiązująca dla sygnałów o dowolnym kształcie, a zatem dla wszystkich sygnałów, które mogłyby się pojawić na wejściu systemu rzeczywistego. W przykładzie zastosowania omówionej metody przedstawiono wyniki optymalizacji modelu rzędu drugiego odwzorowującego system rzędu szóstego przy założeniu kwadratowo-całkowego kryterium błędu oraz dwóch klas sygnałów: - ograniczonych w amplitudzie oraz - ograniczonych w amplitudzie i prędkości narastania.
Rocznik
Strony
451--464
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Faculty of Electrical and Computer Engineering, Cracow University of Technology
Bibliografia
  • 1. Al-Saggaf U.M., Franklin G. E.: Model Reduction Via Balanced Realizations: An Extension and Frequency Weighting Techniques. IEEE Transactions on Automatic Control, 33, No. 7, 1988, pp. 687-691.
  • 2. Arumugam M., Ramamoorty M. A.: A method of simplifying large dynamic systems. International Journal of Control. 17, No. 6, 1973, pp. 1129-1135.
  • 3. Chen C.F., Shieh L. S.: A novel approach to linear model simplification. International Journal of Control, 8, No. 6, 1968, pp. 561-570.
  • 4. Chidarbara M.R.: On A method for Simplifying Linear Dynamic Systems. IEEE Transaction on Instrumentation and Measurement, Correspondence, 1967, pp. 119-120.
  • 5. Davison E.J.: A Method for Simplification Linear Dynamic Systems. IEEE Transactions on Automatic Control, 11, No. l, 1966, pp. 93-101.
  • 6. Fuksa S., Byrski W.: Optimisation problem of some types of square functional on convex sets (in Polish). Works VIII State Conf. Automatics, Szczecin, Poland, 1989, pp. 64-68.
  • 7. Glover K.: All optimal Hankel-norm approximations of linear multivariable systems and their L°° — error bounds. International Journal of Control, 39, 1984, pp. 1115-1193.
  • 8. Goldberg D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison ‒ Wesley Publishing Company, Inc. Massachusetts, USA, 1989.
  • 9. Gutman P., Mannerfelt F., Molamder P.: Contribution to the Model Reduction Problem. IEEE Transactions on Automatic Control, 27, No. 2, 1982, pp. 454-455.
  • 10. Helavi Y.: Frequency Weighted Model Reduction via Optimal Projection. IEEE Transactions on Automatic Control, 37, No. 10, 1992, 537-1542.
  • 11. Kong S. Y. Lin D.W.: Optimal Henkel Norm Model Reductions: Multivariable Systems. IEEE Transactions on Automatic Control, 26, 1981, pp. 832-852.
  • 12. Lam J.: Model reduction of delay systems using Padé approximation. International Journal of Control, 57, No. 2, 1993, pp. 377-391.
  • 13. Lam J., Guang-Hong Yang: Balanced model reduction of symmetric composite systems. International Journal of Control, 65, No. 6, 1996, pp. 1031-1043.
  • 14. Lane P.G.: The principle of matching: a necessary and sufficient condition for inputs restricted in magnitude and rate of change. International Journal of Control, 62, No. 4, 1995, pp. 893-915.
  • 15. Layer E.: Theoretical Principles for Establishing a Hierarchy of Dynamic Accuracy with the Integral-Square-Error as an Example. IEEE Transaction on Instrumentation and Measurement, 46, No. 5, 1997, pp. 1178-1182.
  • 16. Layer E.: Mapping Error of Linear Dynamic Systems Caused by Reduced-Order Model. IEEE Transaction on Instrumentation and Measurement, 50, No. 3, 2001, pp. 792-800.
  • 17.Layer E., Gawedzki W.: Time-Frequency Properties of Signals Maximizing the Dynamic Errors. Systems Analysis, Modelling, Simulation, 11, 1993, pp. 73-77,
  • 18. Layer E., Piwowarczyk T.: Application of the Generalized Fibonacci Sequences to the Simplification of Mathematical Models of Linear Dynamic Systems. Archives of Electrical Engineering, Polish Academy of Sciences, XLVIII, No. 1-2, 1999, 19-30.
  • 19. Meier L., Luenberger D.G.: Approximation of linear constant systems. IEEE Transactions on Automatic Control, 12, 1967, pp. 585-588.
  • 20. Moore B.C.: Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction. IEEE Transactions on Automatic Control, 26, No. 1, 1981, pp. 17-31.
  • 21. Pernebo L., Silverman L.M.: Model Reduction via Balanced State Space Representations. IEEE Transactions on Automatic Control, 27, No. 2, 1982, pp. 382-387.
  • 22. Piwowarczyk T.: Multipower Notation of Symmetric Polynomials in Engineering calculus. Instytut Gospodarki Surowcami Mineralnymi i Energią. Polish Academy of Sciences. Cracow, Poland, 2000.
  • 23. Rao S.A., Lamba S.S.: A new frequency domain technique for the simplification of linear dynamic systems. International Journal of Control, 20, No. 1, 1974, pp. 71-79.
  • 24. Rulland N.K.: The principle of matching: Practical conditions for systems with inputs restricted in magnitude and rate of change. IEEE Transaction on Automatic Control, No 60, 1994, pp. 550-553.
  • 25. Safonov M.G., Chiang R.Y: A Schur Method for Balanced-Truncation Model Reduction. IEEE Transactions on Automatic Control, 34, No. 7, 1987, pp. 729-733.
  • 26. Satoh T., Ishihara T., Inooka H.: Characterization of matched systems. International Journal of Control, 72, No. 5, 1999, pp. 449-456.
  • 27. Sinha N.K., Pille W.: A new method for reduction of dynamic systems. International Journal of Control, 14, No. 1, 1971, pp. 111-118.
  • 28. Sinha N.K., Bereznai G.T.: Optimum approximation of high-order systems by low-order model. International Journal of Control, 14, No. 5, 1971, pp. 951-959.
  • 29. Sinha N.K., De Bruin H.: Near-optimal control of high-order systems using low-order models. International Journal of Control, 17, No. 2, 1973, pp. 257-262.
  • 30. Sreeram V., Agathoklis P.: Model reduction of linear discrete systems via weighted impulse response gramians. International Journal of Control, 53, No. 1, 1991, pp. 129-144.
  • 31. Wilson D.A.: Optimum solution of model reduction problem. International Journal of Control, 20,1974, pp. 57-64.
  • 32. Zakian V.: Perspectives on the principle of matching and the method of inequalities. International Journal of Control, 65, No. 1, 1996, pp. 147-175.
  • 33. Zuchowski A.: Simplified Models of Dynamics (in Polish). Technical University in Szczecin, Poland, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0019-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.