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Abstract — Optimization problems arising in telecommuni-
cations are often large-scale nonlinear problems. Usually their
big size is generated mainly by their linear parts but the ex-
istence of small or medium nonlinear parts prevents us from
directly tackling them with linear solvers, which are efficient.
Instead, the author has proposed a method to decompose big
nonlinear problems into nonlinear and linear parts. Its coor-
dination procedure uses two auxiliary solvers: quadratic and
pure nonlinear. The procedure falls in the class of projec-
tion methods. Special cuts proposed by the author allow to
avoid an excessive zigzagging while not enormously increas-
ing the complexity of both the parts. The validity of these
cuts can be analyzed within the framework of obtuse cone
model. Here the author summarizes the method and analyses
its applicability to nonlinear multicommodity flow problems.
The structure and particular sizes of this problem make the
method useful. The considerations are illustrated by a numer-
ical example with a multicommodity flow problem.

Keywords — multicommodity flow problem, projection methods,
large nonlinear problems.

1. Introduction

Nonlinear multicommodity flow optimization problems
have become a standard mathematical tool in the areas
of networks design and flow control. Unfortunately, such
problems are usually large. However, like in many other
large nonlinear optimization problems, their large size is
formed mainly by linear functions, equations, etc. This big
linear part of a large nonlinear problem could be itself tack-
led with efficient linear programming techniques but one
must take into account the existence of the small nonlinear
part of the problem. Thus we can only think of solving
the problem with the efficiency close to the efficiency with
which its linear part alone would be solved.
For this sake the author has proposed in [3] a hierarchi-
cal optimization algorithm for large nonlinear optimization
problems into a big linear part and a small nonlinear part.
The obtained subproblems are: a large quadratic subprob-
lem (with constraints from the linear part of the original
problem) and a small nonlinear one (with constraints from
the nonlinear part of the original problem). The nonlinear
subproblem is computationally easy due to its small size;
at least the same applies to the coordination procedure.

Thus the efficiency of the whole algorithm depends on the
efficiency of the quadratic solver applied to the quadratic
subproblem and can reach a very high level due to the
observed progress in quadratic programming, polynominal
techniques etc.
The original author’s proposition was not directed to
telecommunication applications; it covered a quite gen-
eral class of large nonlinear problems with big linear parts.
However, four particular structural properties of the prob-
lems were needed to make the proposition work properly
and efficiently. It turns out that these properties are pos-
sessed by nonlinear multicommodity flow (MCF) problems,
thus making the proposition especially adequate for these
problems. This adequateness is shown in this paper.

The coordination procedure of the author’s method is a vari-
ant of projection methods for feasibility problems1 [2, 5, 7]
with accelerating cuts. The distinguishing features of the
authors proposition are a technique of full cuts cumulation,
and specially constructed cuts, so called Z-cuts, that al-
low to decrease the complication of sets shapes caused by
cutting. The initial optimization problem can be reduced
to a sequence of feasibility problems with the level control
technique [8] and these can be then solved with the author’s
method.
In Section 2 of this paper the proposed method is first sum-
marized, very briefly and with references to [3]. First, the
class of large nonlinear feasibility problems solved by the
method is defined. Then the idea of projection methods and
accelerating them by cuts are sketched. Then follows the
description of the author’s proposition, involving: the def-
inition of sets forming the upper-level feasibility problem,
the realization of projections with optimization subprob-
lems, the definitions of used cuts and the final algorithm
statement.
In Section 3 the MCF problem (of a specific subclass) is
defined and the suitability of the proposed method to its
solving is indicated. The section ends with a numerical il-
lustration with an artificially created MCF problem, aiming
in understanding the proposition. In Section 4 the author
gives some conclusions and argues his method can be taken
into account as an element in a construction of algorithm
solving a large MCF problem.

1A feasibility problem is a problem of finding a point satisfying a set
of constraints.
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2. The proposed method

2.1. Large nonlinear problem formulation

The initial optimization task is defined as follows:

min
x2RnN;y2RnL

f (x) f : RnN ! R

s.t. (subject to)

g̃(x)� 0 g̃ : RnN ! R
mN�1

A(x>;y>)> � b A is a matrix of size mLI�n

B(x>;y>)> = d B is a matrix of size mLE�n

xlo�x�xup;ylo�y�yup; (1)

where functions f and g̃i are continuous, quasiconvex,
xlo,xup,ylo,yup are constant vector bounds. The above prob-
lem can be reduced [8] to a sequence of feasibility problems
F(Q) parametrized with a real number Q. Each problem
F(Q) consists in finding (x>;y>)> that satisfies:

g(x)� 0

A(x>;y>)> � b

B(x>;y>)> = d

xlo � x� xup; ylo � y� yup; (2)

where function g : RnN ! R
mN was obtained from function

g̃ by adding a new coordinate saying how much the goal

function value exceeds Q, i.e. gi(�) def
= g̃i(�); i=1; : : : mN�1,

gmN
(�) def

= f (�)�Q.
The feasibility problem has nN nonlinear variables2, nL lin-
ear variables, mN nonlinear inequality constraints, mLI lin-
ear inequality constraints, mLE linear equality constraints.
Let m=mN+mLI +mLE, n= nL+nN. The better mN�m
and nN � n, are fulfilled, the more efficient will be the
algorithm.

2.2. The idea of projection methods

Projection methods serve to solving the following convex
feasibility problem:
Find

x2 S
def
=
\

i=1;:::m

Gi ; (3)

where Gi � Rn are closed, convex sets. In practice Gi are
often defined as sets of points allowed by some constraints.
By now we assume that S is nonempty. In the description
of the solving process we shall confine ourselves with the
case of m= 2.
For x 2 Rn and a closed convex nonempty C � R

n we
shall denote by PCx the orthogonal projection of x onto
C, PCx = arg miny2Ckx� yk2. The projection vector for

2A nonlinear variable is a problem variable involved in at least one
nonlinear function in the model formulation; the remaining variables will
be called linear.

such a projection is PCx� x. It can be shown that such
a projection is defined uniquely.
The simplest way to search for the solution consists in per-
forming sequential alternate projections onto G1 and G2;
i.e., given the starting point x0, we produce a sequence

x1 = PG1
x0; x2 = PG2

x1; x3 = PG1
x2; etc. (4)

We assume such projections are easily realizable numeri-
cally.
The basic fact in convergence analysis of projection meth-
ods is that the projection operator possesses the Fejér con-
traction property.

Definition 1. A finite or infinite sequence (xi) of points in
a Hilbert space H has the Fejér contraction property with
respect to C� H if

kxi�ck2� kxi+1�ck2+kxi+1�xik2 (5)

for each c 2 C. Similarly, operator O : H !H has this
property if for each c2C and x2H kx�ck2� kOx�ck2+
+kOx�xk2.

Fact 1. Projecting onto a nonempty closed convex set of
points in Rn has Fejér contraction property with respect to
this set, and, consequently, to each of its nonempty sets.

For a proof of the above fact see calculations on page 228
in [11] with tmin = tmax= 1.
After putting C= S we see that with every projection per-
formed in our algorithm (4) we decrease the squared norm
from (any but fixed) point c2 S by at least the square of
the appropriate step (projection vector) length. Later it will
suffice to assure certain lengths of steps to establish the
convergence3.
Alternatively, the Fejér contraction property of projections
in our algorithm means that we approach each solution
point with an acute angle.
Zigzagging often slows down projection methods: we may
approach the solution with an angle less than but close
to π=2, making the distance from a solution decrease
very slowly. This happens in an example in Fig. 1; there,
moreover, consecutive projection vectors form angles close
to π .
Cuts serve as a standard remedy for zigzagging; a cut is
an inequality of the form h� � a; bi � hb; bi � 0 with
fixed a; b 2 R

n; its hyperplane H(a; b) is given as
fx 2 Rn : hx�a; bi= hb;big, its halfspace – as fx2 Rn :
hx�a;bi � hb;big.
Using cuts means replacing (4) with

x1 = P
G0

1
1x0; x2 = P

G0

2
2x1; x3 = P

G0

1
3x2; etc. (6)

where sets G0
1

k and G0
2

k (k = 1;2;3; : : : ) are G1 and G2
narrowed by some cuts, i.e., they were obtained from G1

3Which is usually easy and is done with the notion of problem regular-
ity [2].
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Fig. 1. Zigzagging.

and G2 by intersecting G1 and G2 with halfspaces of some
cuts.
A geometric cut based on (constructed after) the projection
of x =2G onto close convex G, G� S is defined as

h��x;PGx�xi � hPGx�x;PGx�xi:

In Fig. 2, unlike in Fig. 1, point x3 was obtained by project-
ing x2 not onto G2 but onto G2 narrowed by the geometric
cut constructed after projection of x2 onto G1. H is a hy-
perplane of this cut. We see that the step made is longer
and we approach the solution with a smaller angle.

Fig. 2. A geometric cut reduces zigzagging.

A cut is called valid or proper if it is satisfied for each
point in the solution set S. Validity is necessary to assure
that projections on narrowed sets (i.e., G0

1
k or G0

2
k) still

possesses the Fejér contraction property with respect to S;
moreover we do not want our method to degenerate by

producing empty G0
1
k or G0

2
k. Geometric cuts constructed

after a projection of an x =2G onto nonempty, closed, convex
G� S can be easily shown to be proper.
We may narrow set G1 or G2 with only one cut but it
may bring a profit in efficiency to narrow them with sev-
eral cuts simultanously (i.e., to intersect G1 or G2 with
the intersection of the halfspaces of several cuts). Various
techniques for cuts cumulation are given in [4, 5, 9, 10, 13]
and a specifically understood cumulation will be also used
here.

2.3. The idea of the method

In order to solve our feasibility problem (2) we need to
somehow transform it to the form of expression (3).
The following sets N and L will play the role of G1 and G2
in (3):

N = fx2 RnN : g(x)� 0^xlo � x� xupg
L =

n
x2 RnN : xlo � x� xup^9y2RnL

�
ylo � y� yup^

^ A(x>;y>)> � b^B(x>;y>)> = d
�o

:

Notice that these are not actually the sets of points allowed
by nonlinear and linear constraints but their orthogonal pro-
jections on the subspace of nonlinear variables. The pro-
jection method will be defined in this subspace.
The projection method of solving the feasibility problem of
finding a common point of N and L will form the higher
level of decomposition. The lower level will serve to realize
the projections.
Finding the projection of point z2 RnN onto N may be
realized as solving the nonlinear optimization problem

min
x2RnN

1
2
kx�zk2

s:t:

x2 N : (7)

Finding the projection of point z2 RnN onto L might be
realized as solving the quadratic subproblem

min
x2RnN;y2RnL

1
2
kx�zk2

s.t.

A(x>;y>)> � b

B(x>;y>)> = d

xlo � x� xup

ylo � y� yup: (8)

Note that if the solution (x?>;y?>)> of the later subprob-
lem satisfies x? 2 N then it also solves the initial feasibility
problem (2). Later one may use either the whole solution
(x?>;y?>)> of (8) or only vector x?. The former is ap-
propriate in communication with the user (the printout of
final solution) while the later is more convenient in the al-
gorithm description. The following consideration will be
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in principle done in the subspace RnN of nonlinear vari-
ables. Placing the higher level of decomposition in this
low-sized subspace will certainly increase the efficiency of
calculations. This subspace can be really considered low-
dimensional when nN� n. The other reason why we re-
quired nN� n and also mN�m is connected with the non-
linear subproblem (7): both the inequalities make it easy by
reducing the number of its variables and of its constraints,
respectively.
For the generated sequence of points we shall use the fol-
lowing notation, slightly different from (6) and given in
a recursive form:

x̄k = P
L0kx̆

k�1; x̆k = P
N0kx̄

k k= 1;2; : : : (9)

Sets N0k and L0k were obtained from L and N by narrowing
with some (possibly by no) cuts.

2.4. Cuts

We shall measure zigzagging Z
(yi )

(l) (with k< l ) of a finite

sequence (yi)li=0 of points in a Hilbert space as:

Z
(yi)
(k) =

∑l�1
i=k kyi+1�yik
kyl �ykk : (10)

If xi are points generated by some projection method we
should try to keep Z:(i) as small as possible. For this sake
we shall introduce the full cumulation of geometric cuts.
Namely, if a cut was constructed after the projection of
point xi onto some set (and xi+1 is the result of this pro-
jection) then this cut affects all the subsequent projections,
which means that these projections are done onto sets nar-
rowed by (maybe not only) this cut. In other words, all the
subsequent points xj must satisfy the cut. One of the alter-
natives for the full cuts cumulation is using noncumulated
cuts: each cut affects only the nearest projections.
For the full cuts cumulation we can nicely assess the se-
quence zigzagging.

Theorem 1. Let a sequence (xi)ni=0 (where n� 1) of points
in a Hilbert space satisfies the cumulated geometric cuts
condition:

8s;1�s�n�1 (x
s�xs�1)>(xn�xs)� 0: (11)

Then the following assessment for the sequence zigzagging
holds:

Z
(xi)
(n)� ∑n�1

i=0 kxi+1�xik
kxn�x0k �pn: (12)

Proof. See the proof of Theorem 1 in [3].

The analysis of the the theorem proof convinces also that
usually the zigzagging places below the above limit; in-
equality (12) is fulfilled as equality only for very particular
configurations of points xi .
We shall describe the firts two types of cuts present in the
method. In kth iteration the following cuts are constructed:

1. h�� x̄k; x̆k � x̄ki � hx̆k� x̄k; x̆k� x̄ki – type A cuts.
They are later used, once or many times4, to narrow
set L.

2. h��x̆k; x̄k�x̆k�1i � hx̄k�1�x̆k�1; x̄k�x̆k�1i – type B cuts.
They are later used, once or many times, to narrow
set N.

These are simply geometric cuts, but we distinguish
the cuts made after projections onto N0k (type A) and
after projections onto L0k (type B).

It is possible to apply Theorem 1 to our algorithm. If
we take sequence x̆0, x̄1, x̆1, x̄1, : : : as sequence (xi)
in this theorem, cumulating both A-type and B-type
cuts will assure the satisfaction of (11) for n� 1, thus
the sequence will not zigzag too strongly.

However, the cuts of both the types have their numer-
ical drawbacks that increase in case of cumulation.
A-cuts influence the definition of (subsequent) sets
L0 i and thus complicate the quadratic optimization
subproblem. The complication may consist in intro-
ducing nonzero elements in the sparse constraint ma-
trix of this problem (approximately nN ones per cut).
Also, we cannot be certain that the subsequent cuts
will not decrease the problem conditioning, e.g. by
aligning almost in parallel. The main disadvantage
of cumulating B-cuts origins from the small size of
the nonlinear optimization subproblems: the relative
complication introduced in these problems by many
cuts may be large.

Fortunately, it has turn out possible to resign cu-
mulating cuts of one of the above types in the al-
gorithm, while preserving the applicability of Theo-
rem 1. With the trick described later, the user may
resign generating (not only cumulating!) cuts of one
of the types. The choice of the type should depend
on particular problem properties. Due to the symme-
try of the question, from now we shall only consider
the case of giving up generating the B-type cuts.

The trick consists in generating in kth iteration cuts
of the third type:

3. h��x̄k; x̄k�x̄k�1i � hx̄k�x̄k�1; x̄k�x̄k�1i – type Z cuts.
They are later used to narrow set L.

When we take sequence (x̄i) as sequence (xi) in the
assumption of Theorem 1 and decide to cumulate
Z-cuts, the theorem will limit the zigzagging of this
sequence. However, we must prove that each Z-cut is
proper. Fortunately, we can show the propriety of the
Z-cut constructed in kth iteration, on condition that
the A-cut constructed in (k�1)th iteration was taken
into account in definition of L0k�1. This Z-cut is
shown to be proper as implied by two proper cuts: the
mentioned A-cut constructed in iteratin k�1 and the
B-cut that we might have (but have not) constructed
in iteration k (see Fig. 3).

4Depending on our decision about cumulating the cuts.

52



A proposition to exploit the partially linear structure of the nonlinear multicommodity flow optimization problem

Showing this implication exceeds the scope of this
paper (see Theorem 2 in [3]). In the proof the coni-
cal cuts surrogating method [4, 5, 9] were used. Sur-
rogating techniques enable showing the propriety of
a certain constructed cuts (so called surogate cut)
from the propriety of several other cuts.

The applied trick is also similar to the modification
in Section 5 of [4].

Fig. 3. Construction of Z-cut in kth iteration.

2.5. The algorithm

The algorithm will be given in its basic variant, in which
B-cuts are absent, A-cuts are not cumulated, Z-cuts are
cumulated.

Algorithm 1. Parameters: tolerance tN � 0 , starting
point x̆0.
We initialize the iteration counter k with 1.

1. Compute x̄k =P
L0kx̆

k�1 with L0k being L narrowed by
some cuts constructed in earlier iterations:

L0k = fy2 L : hy� x̄k�1; x̆k�1�x̄k�1i �
hx̆k�1� x̄k�1; x̆k�1� x̄k�1i^

^(8
j2Kk hy� x̄j�2; x̄j�1� x̄j�2i �
hx̄j�1� x̄j�2; x̄j�1� x̄j�2ig;

where Kk equals to f3; : : :kg, by solving the quadratic
subproblem (8) with L replaced by L0k and with the
substitution z x̆k�1. If L0k = /0 then STOP – report
infeasibility.

2. Compute x̆k=PNx̄k by solving the nonlinear subprob-
lem (7) with the substitution z x̄k. If N = /0 then
STOP – report infeasibility. If kx̆k� x̄kk � tN then
STOP – return the last solution of the quadratic sub-
problem. Otherwise set k := k+1 and go to step 1.

A detailed convergence analysis of (a slightly more general)
method is given in [3, Section 7]. It bases on Fejér con-
traction property and the regularity analysis of the problem
and zigzagging; since the used cuts are proper, the Fejér
contraction mechanism is not disturbed. The analysis con-
ceives also the case of infeasibility: L\N = /0. Based on
the guaranteed sequence zigzagging, the moment of detec-
tion of infeasibility is assessed.

3. The applicability of the method
to the multicommodity flow problem

3.1. The multicommodity flow problem

We shall formulate a variant of a problem of the well known
class of multicommodity flow problems [15]. Let us repre-
sent a telecommunication network as a directed graph. Let
the graph nodes be represented by integer numbers from the

set I
def
= f1; : : : ;Ng, the directed arcs – as members of a set

E � I � I (arc (i; j) will correspond to the unidirectional
link from node i to node j).
Various commodities (various kinds of information) are to
be transported through our network; let us number them
with 1; : : :K. The demand on kth commodity in ith node
is given by the real parameter r i;k, while its negative value
denotes that the node actually emits the commodity (in the
amount of jr i;kj). Define decision variables in our problem:

� φk
u 2 R, u2 E; k= 1: : :K – the kth commodity flow

in arc u.

� ψu 2 R, u 2 E – total flow of all commodities in
arc u.

The flow ψu in arc u costs Φ(ψu), where Φ : R+ 7! R+

is an increasing function. The cost can have various real-
world interpretations. For example, it can represent the cost
of reconstruction of link u to the capacity of ψu or it can
be a certain measure of slowness of the link.
The multicommodity flow optimization problem consists in
minimizing the total cost of network flow and is formulated
as follows:

minφk
u

∑
u2E

Φ(ψu) (13)

s.t.

ψu =
K
∑

k=1
φk

u for u2 E (14)

∑
(i; j)2E

φk
( j ;i)� ∑

(i; j)2E
φk
(i; j)= r i;k for i 2 I ; k=1; : : :K (15)

φk
u � 0 for u2 E; k= 1; : : :K : (16)
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Equation (13) defines the total cost of network flow, (14) de-
fines the total flow in each arc u, (15) expresses the Kirchoff
law for each node i and, finally, (16) reflects the unidirec-
tional character of arcs.
The resulting feasibility problem F(Q) takes the form

Find φk
u 2 R;ψ 2 R

satisfying

∑
u2E

Φ(ψu)�Q and

(14)� (16): (17)

3.2. The applicability of the proposed method

Let us summarize the important properties of the feasibility
problem (2) important for the proper and efficient work of
our algorithm:

1. The nonlinear equality constraints are absent.

2. The nonlinear inequality constraint functions must be
quasiconvex.

3. nN� n, where nN is the number of nonlinear vari-
ables, n is the number of all variables, is appreciated.

4. mN�m, where mN is the number of nonlinear con-
straints, m is the number of all constraints, is appre-
ciated.

The key observation in this paper is that these properties
are possessed by problem (17):

Ad 1. Obviously.

Ad 2. The increasing character of Φ implies its quasicon-
vexity and thus the quasiconvexity of ∑u2E Φ(ψu)
treated as a vector function of ψus. It should be
stressed that continuous, increasing but concave Φ,
typical in practice due to the economy-of-scale phe-
nomenon, are acceptable5.

Ad 3. Note that nN = jEj, n= K � jEj.
Ad 4. Note that mn = 1, m= K �N.

Observe also that the last two properties are the better ful-
filled the greater is the number K of commodities.

3.3. Numerical illustration

The method was applied to an artificial multicommodity
flow problem of class (13)–(16). The aim of experiments
was to show the relations between particular sizes of the
problem (and subproblems) we can deal with, to simply val-
idate the method by analyzing its results and to investigate
how much iterations do the coordination procedure of our
method as well as the level control loop (the costs of opti-
mization of subproblems were not investigated, since they

5It remains to explain why our method required property 2. It was
simply necessary to make the level sets of the constraint functions convex
and thus the projection methodology applicable.

depend on many technical details: used solvers, restarting
techniques, etc.).
The bidirectional ring network, shown in Fig. 4 was used
in computations.

Fig. 4. The example network. Circles represent nodes, arrows
represent links, numbers in circles – numbers of nodes.

K = N commodities were distinguished. Each kth com-
modity had a single source node, namely node k, and a sin-
gle collector node, namely node ((k+1) modN)+1, so
each commodity flew clockwise between two consecutive
nodes. The flow of kth commodity amounted to the value
of 1:5 �k=N. Precisely, there was:

rk;k = 1:5 �k=N : for k= 1; : : :N

rk;((k+1) modN)+1 =�rk;k for k= 1; : : :N

ri; j = 0 for remaining pairs (i; j):

The number of nodes N was the parameter of the prob-
lem, and the problem structure implied the remaining sizes:
jEj= 2 and, as said above, K = N.
Table 1 shows the particular sizes of the problem, seen as
an instance of optimization problem (1). The same sizes are
adequate also for the resulting problem (2). The number mN
of nonlinear constraints equals 1. The sizes of optimization
subproblems from the decomposition scheme can be also
reconstructed from this table: the nonlinear subproblem
has nN variables and mN = 1 constraints and the quadratic
subproblem has n variables and m constraints.
The cost function Φ was defined as Φ(ψ) = (1+ψ2)0:4�1.
For small arguments this function behaves like a convex
function, whereas for large arguments – like a concave one.
Such a choice was aimed to show the broadness of the class
of functions Φ acceptable by our method; also it introduces
the speciffic phenomena in the optimized network flow (see
later). It can have the following real-world interpretation:
the cost of reconstruction of a link should be in principle
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given by a concave function, to acomodate the economy-
of-scale phenomenon. However, for small flows, a serious
reconstruction of a link might be not necessary, it perhaps
suffices to make small improvements. Thus for small argu-
ments Φ should be rather flat.

Table 1
The problems and their sizes

Problem A B C D

N 3 10 20 30

Number of variables (nN) 25 220 840 1860

Number of constraints (m) 15 120 440 960

Number of nonlinear

variables (nN)
6 20 40 60

The reduction of optimization problem (1) to a sequence
of feasibility problems (2) was done with the level control
scheme [8]. This method can be viewed as a method for
finding the optimal value of the problem (1). It is based
on bisection of a certain interval. The initial left end L and
right end U of the interval are given by the user: L and
U are lower and upper bounds for the optimal value. The
value Q for current feasibility problem Q is chosen some-
where in the midle on the current interval. The interval is
narrowed with the following techniques:

� Values of f in feasible points generated during the
algorithm course are used to update the lower bound
(left end of the interval).

� Infeasibility of the feasibility problem F(Q) allows
to update the current upper bound (right end of the
interval) to the value of Q. The infeasibility is de-
tected by encountering that the sum of squares of
made steps exceeds the square of R, the user-given
diameter of a ball containing all the points generated
by the algorithm6.

The applied method varied from the original method of
level control in the following aspects:

� The cuts were present when solving the feasibility
problems.

� Infeasibility of a feasibility subproblem was detected
much quicker by encountering the emptyness of N or
L0k (which, in turn, was detected as an infeasibility
of one of the optimization subproblems), similarily
as in [6].

The simple structure of the problem allows to quess its
optimal value (the minimal cost). Each commodity can be
reasonably sent between its source and its collector (the
consecutive nodes) only in two ways: clockwise (through
a single link) or clock-counterwise (through a path of

6Which, roughly speaking, contradicts to the behavior implied by the
Fejér contraction property.

length N�1). Since the later way engages much more links,
it probably generates a bigger cost. Thus we can transport
all the commodity clockwise. For such a solution the total
flow cost will be certainly equal to ∑N

k=1 Φ(rk;k), and it will
be refered later as the heuristic optimal value of the prob-
lem or heuristic f ?, since we obtained it with a heuristic
reasoning.
The method was implemented in the C++ language. The
LP-DIT library [14] implementing sparse matrices and re-
alizing linear problems storage was used.
The solver from IAC-DIDASN++ system (see e.g. [12])
and HOPD [1] were used as auxiliary solvers: respectively
nonlinear and quadratic.
The parameters of the level control scheme were set as fol-
lows: L= 0, U= 5N, R= 50N, θ = 0:75 (θ is a bisection
parameter – see op.cit.). Tolerance tN was set to 1e�4. The
results of experiments are given in Table 2, where f ? de-
notes the optimal value of a problem, “nfp” – the number of
feasibility problems generated by the level control scheme
and “total iterations” – the total number of iterations the
method did in solving all feasibility problems.

Table 2
Results of experiments

Problem A B C D

Heuristic f ? 1.52605 5.76155 11.81417 17.86702

Computed f ? 1.37162 5.73391 11.8015 17.8588

nfp/total it-

erations
9/34 12/31 11/31 12/26

Experiments are commented in Section 4, here we shall
only show why the comuted optimal values seem reason-
able. They are slightly lower than their “heuristic” vari-
ants. This explains in the following way. While the flow in
clock-counterwise is very small, the derivative of Φ at the
point corresponding to such a flow is also very small. Thus
it pays to send a small fraction of each demand a clock-
counterwise-way, which is cheaper and which we did not
take into account in our heuristic reasoning. The analysis
of the values of decision variables obtained by the method
supports this hypothesis. However, with the grow of N, the
length of the clock-counterwise path becomes larger, the
costs of sending flows clock-counterwise – larger, and the
described phenomenon vanishes. This we see in Table 2:
the gap between the heuristic and computed optimal values
clearily vanishes with the growth of N.

4. Conclusions

The goal of the author was to show that multicommodity
flow problems are a very interesting case of large nonlinear
optimization problems that seem especially created for his
method, mainly due to their particular sizes and absence of
nonlinear equality constraints.
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The simple example numerical presented above was only an
illustration. It does not conceive the complexity of practi-
cal models, with their additional structural elements, some
hierarchical structure necessary to account for extremely
huge sizes, etc. However, the basic information for a con-
structor of a software solving MCF refers to the behavior of
the projection method itself and is following: the method
did not do many iterations, and their number did not grow
with the increase of the problem size. Moreover, the size
of the subspace in which the projection method operates,
as well as the sizes of nonlinear subproblems were really
small. Thus embedding the method in such a software thus
seems worth considering. However, many technical details
ought to be dealt with. The first one will perhaps con-
cern warm restarts. Optimization subproblems, especially
quadratic ones, are very similar each to other and should
not be solved independently, but in each subproblem some
information (e.g., some matrix factorization) from an earlier
instance of the subproblem, should be preserved in order
not to repeat similar computations. However, not all the
quadratic solvers allow for warm restarts (e.g., the version
of the quadratic solver used by the author).
Using projection methods in the presented way gives also
some light to the question of how big the complication
introduced to big linear MCF problems by the addition of
a small nonlinear part is. This complication expressed here
mainly with a number several tens of iterations in the higher
level of our decomposition, and with the necessity of taking
into account quadratic goal functions. Both these aspects of
complication may turn out to be modest by the current and
future growth of computers power and progress in quadratic
programming techniques; moreover, techniques like warm
restarting can decrease their meaning.
Finally, we state that, despite the precise convergence anal-
ysis given in [3], the simple example showed the validity
of the method in the sense of finding a proper solution.
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