PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Trend of Improvement of Thermal Model for Calculating the TOT and HST

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Modyfikacje i ulepszenia modelu termicznego transformatora na potrzeby obliczeń parametrów TOT i HST
Języki publikacji
EN
Abstrakty
EN
As the transformers are one of the expensive equipment of power systems optimum loading is notified by designers, nowadays loading was done base on the IEC and IEEE standards according to the hot spot temperature (HST) as an effective criteria on loading and overloading. To predict HST and TOT, many principal models have been proposed such as classic thermal, alternative thermal and dynamic thermal models. In this paper attempts have been made to introduce reliable and acceptable thermal models, and explain the procedure of calculating the top oil temperature and hot spot temperature as two criteria to evaluate the load ability and the insulation life of transformer. Eventually, different types of thermal models are compared with each other on a 30-MVA oil-natural air-forced transformer.
PL
W artykule zaproponowano sposób tworzenia modelu termicznego transformatora, oraz opisano procedurę obliczania maksymalnej temperatury oleju i uzwojeń. Te dwie wartości zdefiniowano jako parametry określające dopuszczalną obciążalność i żywotność izolacji transformatora. Dokonano porównania różnych modeli termicznych, stworzonych na podstawie 30 MVA transformatora z olejem naturalnym i wymuszonym obiegiem powietrza.
Rocznik
Strony
297--301
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
autor
  • Department of Electrical Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran, m.asgary28@gmail.com
Bibliografia
  • [1] I. E. C. Standard, "Guide for loading for oil Immersed Power Transformers," Geneve,Swiss, 1991.
  • [2] D. Karsai, D. Kerenyi, and D. Kiss, Large power transformers: Elsevier Science Pub. Co. Inc., New York, NY, 1987.
  • [3] V. Montsinger, "Loading transformers by temperature," Transactions of the American Institute of Electrical Engineers, p. 776, 1930.
  • [4] X. Mao, D. Tylavsky, and G. McCulla, "Assessing the reliability of linear dynamic transformer thermal modelling," IEE Proceedings Transmission and Distribution, vol. 153, p. 414, 2006.
  • [5] Jiang Ta, S. Caixin, L. Jian, and C. Weigen, "Comparison of Two Thermal Circuit Models for HST Calculation of Oil-Immersed Transformers," in International Conference on Condition Monitoring and Diagnosis, IEEE, Ed. Beijing, China, 2008
  • [6] H. A.-R. Ahmed Al-Nadabi, "Design A Simulation Model to Estimate the Hot Spot Temperature in Power Transformers," in Systems, Signals & Devices (SSD-09) Djerba-Tunisia: IEEE, 2009.
  • [7] F. P. Incropera and D. P. De Witt, Fundamentals of heat and mass transfer, 2nd edition: John Wiley & Sons, 1985.
  • [8] L. Jauregui-Rivera, D.J. Tylavsky, "Acceptability of Four Transformer Top-Oil Thermal Models-Part I: Defining Metrics," IEEE Transactions on Power Delivery, vol. 23, pp. 860-865, 2008.
  • [9] V. Rummiya, T. Stefan, and S. Tobias, "Improved Top-oil Temperature Model for Unsteady-State Conditions of Power Transformers," in Proceedings of the XIVth International Symposium on High Voltage Engineering, Beijing, China: Tsinghua University, 2005.
  • [10] D. Zill and M. Cullen, Differential equations with boundaryvalue problems: Brooks/Cole Pub Co, 2008.
  • [11] C. Edwards and D. Penney, Differential equations and boundary value problems: Brooks/Cole Pub Co, 2004.
  • [12] A. A. Elmoudi, "Evaluation of power system harmonic effects on transformers: Hot spot calculation and loss of life estimation," Unpublished PhD Thesis, Helsinki University of Technology, 2006.
  • [13] M. Pradhan and T. Ramu, "Prediction of hottest spot temperature(HST) in power and station transformers," IEEE Transactions on Power Delivery, vol. 18, pp. 1275-1283, 2003.
  • [14] M. Isha and Z. Wang, "Transformer hotspot temperature calculation using IEEE loading guide," in International Conference on Condition Monitoring and Diagnosis, 2008, pp. 1017-1020.
  • [15] IEEE, "Guide for Loading Mineral-Oil-Immersed Power Transformers-C57.91-1995.," 1995.
  • [16] Mohammad Tolou Askari and M. Z. A. Ab Kadir, "The Effect of Ambient Temperature on Insulation Life of Transformer " in International Advanced of Technology Congress (ATCI), Malaysia, 2009.
  • [17] D. Susa and H. Nordman, "A Simple Model for Calculating Transformer Hot-Spot Temperature," IEEE Transactions on Power Delivery, vol. 24, p. 1257, 2009.
  • [18] A. Elmoudi, M. Lehtonen, and H. Nordman, "Effect of Harmonics on Transformers Loss of life," in Electrical Insulation, 2006, pp. 408-411.
  • [19] A. Elmoudi, M. Lehtonen, and H. Nordman, "Corrected Winding eddy-current harmonic loss factor for transformers subject to nonsinusoidal load currents," 2005 IEEE Russia Power Tech, pp. 1-6, 2005.
  • [20] M. Popescu, A. Bulucea, and L. Perescu, "Improved Transformer Thermal Models," WSEAS Transactions on Heat and Mass Transfer, vol. 4, pp. 87-97, October 2009.
  • [21] G. Swift, E. Zocholl, M. Bajpai, J. Burger, C. Castro, S. Chano, F. Cobelo, P. De Sa, E. Fennell, and J. Gilbert, "Adaptive transformer thermal overload protection," IEEE Transactions on Power Delivery, vol. 16, pp. 516-521, 2001.
  • [22] J. Declercq and W. Van Der Veken, "Accurate hot spot modeling in a power transformer leading to improved design and performance," in Transmission and Distribution Conference, 1999, pp. 920-924 vol. 2.
  • [23] A. Elmoudi and M. Lehtonen, "Eddy losses calculation in transformer windings using FEM," in The 44th International Scientific Conference of Riga Technical University, Riga, Latvia, 2003, pp. 9-11.
  • [24] C. McShane, K. Rapp, J. Corkran, G. Gauger, and J. Luksich, "Aging of paper insulation in natural ester dielectric fluid," in IEEE PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION, 2001, pp. 675-679.
  • [25] X. Mao, D. Tylavsky, and G. McCulla, "Assessing the reliability of linear dynamic transformer thermal modelling," IEE Proceeding Generation Transmission and Distribution, vol. 153, p. 414, 2006.
  • [26] L. Pierce, "Predicting liquid filled transformer loading capability," 1992, pp. 197-207.
  • [27] Z. Radakovic and K. Feser, "A new method for the calculation of the hot-spot temperature in power transformers with ONAN cooling," IEEE Transactions on Power Delivery, vol. 18, pp. 1284-1292, 2003.
  • [28] W. H. H. B. C. Lesieutre, and J. L. Kirtley, Jr, "An improved transformer top oil temperature model for use in an on-line monitoring and diagnostic system," Jan. 1997.
  • [29] S. Tojo, "Proposition of individual loading guide for power transformers," IEEE Transactions on Power Delivery, vol. 21, pp. 1383-1389, 2006.
  • [30] V. Ohis and T. Czaszejcko, "Techniques for Estimation of Hot Spot Temperatures in Transformers," 2002.
  • [31] J. Aubin, R. Bergeron, and R. Morin, "Distribution transformer overloading capability under cold-loadpickup conditions," IEEE Transactions on Power Delivery, vol. 5, pp. 1883-1891, 1990.
  • [32] L. Jauregui-Rivera and D. Tylavsky, "Acceptability of Four Transformer Top-Oil Thermal Models-Part I: Defining Metrics," IEEE Transactions on Power Delivery, vol. 23, pp. 860-865, 2008.
  • [33] L. Pierce, G. Co, and G. Rome, "Transformer design and application considerations for nonsinusoidalload currents," IEEE Transactions on industry applications, vol. 32, pp. 633-645, 1996.
  • [34] K. Takami and J. Mahmoudi, "Numerical Modelling of Heat Generation and Distribution in the Core and Winding of Power Transformers," International Journal of Emerging Electric Power Systems, vol. 9, p. 7, 2008.
  • [35] L. Jauregui-Rivera and D. Tylavsky, "Acceptability of Four Transformer rTop-Oil Thermal Models-Part II: Comparing Metrics," IEEE Transaction on Power Delivery, PWRD, vol. 23, p. 866, 2008.
  • [36] D. Susa, M. Lehtonen, and H. Nordman, "Dynamic thermal modelling of power transformers," IEEE Transactions on Power Delivery, vol. 20, pp. 197-204, 2005.
  • [37] G. Swift, "Adaptive transformer thermal overload protection," IEEE Power Engineering Review, vol. 21, pp. 60-60, 2001.
  • [38] G. Swift, T. Molinski, W. Lehn, A. Technol, and M. Winnipeg, "A fundamental approach to transformer thermal modeling. I. Theoryand equivalent circuit," IEEE Transactions on Power Delivery, vol. 16, pp. 171-175, 2001.
  • [39] M. Taghikhani and A. Gholami, "Prediction of hottest spot temperature in power transformer windings with non-directed and directed oil-forced cooling," International Journal of Electrical Power and Energy Systems, vol. 31, pp. 356-364, 2009.
  • [40] D. Susa, J. Palola, M. Lehtonen, and M. Hyvarinen,"Transformers-Temperature Rises in an OFAF Transformer at OFAN Cooling Mode in Service," IEEE Transactions on Power Delivery, vol. 20, p. 5172, 2005.
  • [41] B. Sathyanarayana, G. Heydt, and M. Dyer, "Distribution Transformer Life Assessment with Ambient Temperature Rise Projections," Electric Power Components and Systems, vol. 37, pp. 1005-1013, 2009.
  • [42] J. Olivares, P. Georgilakis, and R. Oconvaldez, "A Review of Transformer Losses," Electric Power Components and Systems, vol. 37, pp. 1046-1062, 2009.
  • [43] A. Al-Badi, A. Elmoudi, I. Metwally, A. Al-Wahaibi, H. Al-Ajmi, and M. Al Bulushi, "Losses Reduction In Distribution Transformers," Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 2, 2011.
  • [44] D. Tylavsky, X. Mao, and G. McCulla, "Transformer thermal modeling: Improving reliability using data quality control," IEEE Transactions on Power Delivery, vol. 21, p. 1357, 2006.
  • [45] K. Takami, H. Gholinejad, and J. Mahmoudi, "Thermal and hot spot evaluations on oil immersed power Transformers by FEMLAB and MATLAB software’s," in IEEE Conference, Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE, 2007, pp. 529-534.
  • [46] D. Susa, M. Lehtonen, and H. Nordman, "Dynamic thermal modeling of distribution transformers," IEEE Transactions on Power Delivery, vol. 20, pp. 1919-1929, 2005.
  • [47] M. Savaghebi, A. Gholami, and H. Hooshyar, "Loading Capability of Transformer in Over-excitation Condition," in IEEE PES PowerAfrica 2007 Conference and Exposition Johannesburg South Africa, 2007.
  • [48] A. Reddy and M. Vijaykumar, "Hottest Spot and Life Evaluation of Power Transformer Design Using Finite Element Method," Journal of Theoretical and Applied Information Technology, pp. 238-243, 2008.
  • [49] D. Susa, J. Palola, M. Lehtonen, and M. Hyvarinen, "Temperature rises in an OFAF transformer at OFAN cooling mode in service," IEEE Transactions on Power Delivery, vol. 20, pp. 2517-2525, 2005.
  • [50] A. Elmoudi, M. Lehtonen, and H. Nordman, "Transformer Thermal Model Based on Thermal-Electrical Equivalent Circuit," in proceeding of CMD, 2006, pp. 2-4.
  • [51] M. Popescue, "Modelling and Simulations of Oil-filled Transformer Loss-of-Life Models," WSEAS Transaction on Circuits and Systems, vol. 8 pp. 801-811, October 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS1-0050-0089
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.