PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mitigation of Shunt Reactor Overvoltages Using Delta-Bar-Delta and Directed Random Search Algorithms

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Redukcja przepięć w reaktancji bocznikowej - algorytmy DBD oraz DRS
Języki publikacji
EN
Abstrakty
EN
This paper introduces an intelligent-based method using artificial neural network (ANN) to reduce shunt reactor switching overvoltages. In power systems, an overvoltage could be caused by core saturation on the energization of a shunt reactor with residual flux. The most effective method for the limitation of the switching overvoltages is controlled switching since the magnitudes of the produced transients are strongly dependent on the closing instants of the switch. We introduce a harmonic index that it’s minimum value is corresponding to the best case switching time. In addition, in this paper three learning algorithms, delta-bar-delta (DBD), extended delta-bar-delta (EDBD) and directed random search (DRS), were used to train the ANNs to estimate the optimum switching instants for real time applications. ANN is trained with equivalent circuit parameters of the network, so that developed ANN is applicable to every studied system. To verify the effectiveness of the proposed index and accuracy of the ANNbased approach, two case studies are presented and demonstrated.
PL
W artykule przedstawiono metodę redukcji możliwych przepięć łączeniowych, występujących w reaktancji bocznikowej, przy wykorzystaniu algorytmu inteligentnego, opartego na sieciach neuronowych. Wyznaczono wskaźnik określający najlepsze momenty przełączeń, w zależności od pojawiających się stanów nieustalonych. Do trenowania sieci neuronowej wykorzystano trzy algorytmy uczące się. Przedstawiono dwa przykłady potwierdzające skuteczność działania.
Rocznik
Strony
269--274
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] Khodabakhchian B., Mahseredjian J., Sehati M.R., Mir-Hosseini M., Potential risk of failures in switching EHV shunt reactors in a one-and-a-half breaker scheme, Electric Power System Research, 76 (2006) 655-662.
  • [2] Prikler L., Ban G., Banfai G., EMTP models for simulation of shunt reactor switching transients, Electrical Power & Energy Systems, 19 (1997), No. 4, 235-240.
  • [3] Dantas K., Fernandes D., Neves L.A., Souza B.A., and Fonseca L., Mitigation of switching overvoltages in transmission lines via controlled switching, IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, 1-8, 2008.
  • [4] Ketabi A., and Sadeghkhani I., Electric Power Systems Simulation Using MATLAB, Morsal Publications, Apr. 2011. (In Persian)
  • [5] Sybille G., Brunelle P., Hoang L., Dessaint L.A., and Al-Haddad K., Theory and applications of power system blockset, a MATLAB/Simulink-based simulation tool for power systems, in Proc. IEEE Power Eng. Soc. Winter Meeting, 774-779, 2000.
  • [6] Duro M.M., Damping Modelling in Transformer Energization Studies for System Restoration: Some Standard Models Compared to Field Measurements, in Proc. IEEE Bucharest Power Tech Conference, Bucharest, Romania, 2009.
  • [7] Sybille G., Gavrilovic M.M., Belanger J., and Do V.Q., Transformer saturation effects on EHV system overvoltages, IEEE Trans. Power App. Syst., PAS-104 (1985), 671-680.
  • [8] Tsirekis C.D., Hatziargyriou N.D., and Papadias B.C., Control of Shunt Reactor Inrush Currents in the Hellenic-Interconnected Power System, IEEE Trans. Power Syst., 20 (2005), 757-764.
  • [9] Taher S.A. and Sadeghkhani I., Estimation of magnitude and time duration of temporary overvoltages using ANN in transmission lines during power system restoration, Simulation Modelling Practice and Theory, 18 (2010), 787-805.
  • [10] Adibi M.M., Alexander R.W., and Avramovic B., Overvoltage control during restoration, IEEE Trans. Power Syst., 7 (1992), 1464-1470.
  • [11] Ketabi A., Ranjbar A.M., and Feuillet R., Analysis and Control of Temporary Overvoltages for Automated Restoration Planning, IEEE Trans. Power Delivery, 17 (2002), 1121-1127.
  • [12] Adibi M.M., Borkoski J.N., and Kafka R.J., Analytical tool requirements for power system restoration, IEEE Trans. Power Syst., 9 (1994), 1582-1591.
  • [13] Hayashi T., et al., Modeling and simulation of black start and restoration of an electric power system. Results of a questionnaire, Electra, No.131 (1990), 157-169.
  • [14] Ketabi A., Sadeghkhani I., and Feuillet R., Using artificial neural network to analyze harmonic overvoltages during power system restoration, European Transactions on Electrical Power, 21 (2011), 1941-1953.
  • [15] Sadeghkhani I. and Ketabi A., Switching overvoltages during restoration: evaluation and control using ANN, Lambert Academic Publishing, 2012.
  • [16] Morin G., Service restoration following a major failure on the hydroquebec power system, IEEE Trans. Power Delivery, 2 (1987), 454-463.
  • [17] Haykin S., Neural Network: A Comprehensive Foundation, 2nd ed., Prentice Hall, 1998.
  • [18] Maren A., Harston C., Pap R., Handbook of Neural Computing Applications, London Academic Press, 1990.
  • [19] Bayindir R., Sagiroglu S., Colak I., An intelligent power factor corrector for power system using artificial neural networks, Electric Power Systems Research, 79 (2009), 152-160.
  • [20] Jacobs, R.A., Increased rate of convergence through learning rate adaptation, Neural Networks, 1 (1988), 295-307.
  • [21] Minai A., Williams R.D., Acceleration of backpropagation through learning rate and momentum adaptation, International Joint Conference on Neural Networks, 676-679, 1990.
  • [22] Matyas J., Random optimization, Automation and Remote Control, 26 (1965), 246-253.
  • [23] Wunderlich S., Adibi M.M., Fischl R., and Nwankpa C.O.D., An approach to standing phase angle reduction, IEEE Trans. Power Syst., 9 (1994), 470-478.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS1-0050-0082
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.