PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stochastyczny model odpowiedzi komórek na promieniowanie

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
W niniejszej pracy opisano całkowicie nowy model stochastyczny odpowiedzi grupy komórek na promieniowanie jonizujące. Model opiera się na technice modelowania Monte Carlo z łańcuchami Markowa i jest całkowicie stochastyczną alternatywą dla istniejących modeli deterministycznych. Algorytm bazuje na kilkunastu parametrach wejściowych opisujących biologię i fizykę wirtualnej komórki; nałożenie na siebie na wejściu wielu efektów liniowych daje w rezultacie odpowiedź progową nieliniową na powstawanie komórek nowotworowych. Algorytm umożliwia swobodne dodawanie i rozwijanie wielu szczegółowych efektów radiacyjnych, takich jak odpowiedź adaptacyjna, czy efekt widza. Wyniki symulacji okazały się zgodne z wieloma danymi eksperymentalnymi.
Rocznik
Tom
Strony
23--37
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • Narodowe Centrum Badań Jądrowych, Otwock-Świerk
Bibliografia
  • 1. Allison W. Radiation and reason . the impact of science on a culture of fear. York 2009.
  • 2. Anderson M., Storm H.H.. Cancer incidence among Danish thorotrast-exposed patients. J. Natl. Cancer Inst. 1992, nr 84, s. 1318-1325.
  • 3. Booth T. L. Sequential Machines and Automata Theory (1st ed.). New York 1967.
  • 4. Bryszewska M., Leyko W. Biofizyka dla biologów. PWN, Warszawa1997.
  • 5. Calabrese E.J., Baldwin L.A. The Hormetic Dose-Response Model Is More Common than the Threshold Model in Toxicology. Toxicological Sciences 2003, nr 71.
  • 6. Di Majo V., Coppola M., Rebessi S., Bassani B., Alati T., Saran A., Bangrazi C., Covelli V. Dose-response relationship of radiation-induced Harderian gland tumours and myeloid leukaemia of the CBA/Cne mouse. J. Natl. Cancer Inst. 1986, nr 76, pp. 955-963.
  • 7. Elmore E., Lao X-Y, Ko M., Rightnar S., Nelson G. and Redpath J.L. Neoplastic transformation In vitro induced by low doses of 232 MeV protons. International Journal of Radiation Biology 2005, nr 81, s. 291-297.
  • 8. Feinendegen L.E. Low doses of ionizing radiation: relationship between biological benefit and damage induction. A synapsis. World Journal of Nuclear Medicine 2005, nr 4.
  • 9. Feinendegen L.E., Bond V.P., Soudhaus C.A. The dual response to low-dose irradiation: induction vs. prevention of DNA damage. Biol. Effects of Low Dose Radiation - Elsevier Science 2000.
  • 10. Feinendegen L.E., Neuman R.D. Physics must join with biology in better assessing risk from lowdose irradiation. Radiation Protection Dosimetry 2005.
  • 11. Feinendegen L.E., Pollycove M. Biologic responses to low doses of ionizing radiation: detriment versus hormesis. J. Nucl. Med. 2001, nr 42 (z. 7 & 9).
  • 12. Feinendegen L.E., Pollycove M., Neumann R.D. Low-dose cancer risk modeling must recognize upregulation of protection. Dose Response 2010, nr 8, z. 2, s. 227-52
  • 13. Fornalski K.W., Dobrzyński L., Janiak M.K. A Stochastic Markov Model of Cellular Response to Radiation. Dose Response 2011 (pre-press).
  • 14. Hahn W.C., Counter C.M., Lundberg A.S., Beijersbergen R.L., Brooks M.W., Weinberg R.A. Creation of human tumour cells with defined genetic elements. Nature 1999, nr 400, s. 464-468.
  • 15. Hahn W.C., Weinberg R.A. Rules for making human tumor cells. N. Engl. J. Med. 2002, nr 347, s.1593-1603.
  • 16. Henriksen T., Maillie H.D. Radiation & Health. Taylor & Francis 2003.
  • 17. Hosoi Y., Sakamoto K. Suppressive effect of low dose total body irradiation on lung metastasis: dose dependency and effective period. Radiotherapy and Oncology 1993, nr 26, s.177-179.
  • 18. ICRU (International Commission on Radiation Units and Measurements), Microdosimetry., Report, 1983, nr 36.
  • 19. Ko S.J., Lao X-Y, Molloi S., Elmore E. and Redpath J.L. Neoplastic transformation in vitro following exposure to low doses of mammographic energy x-rays: Quantitative and mechanistic aspects. Radiation Research 2004, nr 162, s. 646-654.
  • 20. Ko M., Lao X-Y, Kapadia R., Elmore E. and Redpath J.L. Neoplastic transformation in vitro: role of adaptive response and bystander effects. Mutation Research 2006, nr 597, s.11-17.
  • 21. Lehnert S. Biomolecular action of ionizing radiation. Taylor & Francis, New York . London 2007.
  • 22. Leonard B.E. A review: development of a microdose model for analysis of adaptive response and bystander dose response behavior. Dose Response 2008, nr 6, s.113-183
  • 23. Liu S.Z., Zhang Y.C., Mu Y., Su X., Liu J.X. Tymocyte apoptosis in response to low-dose radiation. Mutation Research 1996, nr 358, s.185-191.
  • 24. Miller A.B., Howe G.R., Sherman G.J., Lindsay J.P., Yaffe M.J, Dinner P.J., Risch H.A., Preston D.L. Mortality from breast cancer after irradiation during fluoroscopic examination in patients being treated for tuberculosis. New England Journal of Medicine 1989, nr 321, s.1285-1289.
  • 25. Mitchel R.E.J., Jackson J.S., McCann R.A., and Boreham D.R. The adaptive response modifies latency for radiation-induced myeloid leukemia in CBA/H mice. Radiation Research 1999, nr 152, s.273-279. 
  • 26. Mitchel R.E.J., Jackson J.S., Morrison D.P., and Carlisle S.M. Low doses of radiation increase the latency of spontaneous lymphomas and spinal osteosarcomas in cancer-prone, radiation sensitive Trp53 heterozygous mice. Radiation Research 2003, nr 159, s. 320-327.
  • 27. Mole R.H. Dose-response relationships, pp. 403-420 in: Radiation Carcinogenesis: Epidemiology and Biological Implications (J.D. Boice and J.F. Fraumeni, editors), Raven Press, New York 1984.
  • 28. Mothersill C., Seymour C. Radiation-induced bystander effects: evidence for an adaptive response to low dose exposures? Dose Response 2006, nr 4, z. 4, s. 277-282.
  • 29. Nowosielska E.M., Cheda A., Wrembel-Wargocka J., Janiak M.K. Modulation of the growth of pulmonary tumour colonies in mice after single or fractionated low-level irradiations with X-rays. Nukleonika 2008, nr 53, s. 9-15 (suplement 1).
  • 30. Podgórska M. et al. Łańcuchy Markowa w teorii i zastosowaniach, Warszawa, Szkoła Główna Handlowa Oficyna Wydawnicza 2002.
  • 31. Pollycove M., Feinendegen L.E. Radiation-induced versus endogeneous DNA damage. Human & Environmental Toxicology 2003, nr 22.
  • 32. Prise K.M., Folkard M., Michael B.D. A review of the bystander effect and ist implications for lowdose exposure. Radiation Protection Dosimetry 2003, vol. 104, nr. 4, s. 347-355.
  • 33. Redpath J.L., Elmore E. Radiation-induced neoplastic transformation in vitro, hormesis and risk assessment.Dose-Response 2007, nr 5, s. 123-130.
  • 34. Redpath J.L., Liang D., Taylor T.H, Christie C., and Elmore E. The shape of the dose-response curve for radiation-induced neoplastic transformation in vitro: Evidence for an adaptive response against neoplastic transformation at low doses of low-LET radiation. Radiation Research 2001, nr 156, s. 700-707.
  • 35. Redpath J.L., Lu Q., Liao X-Y, Molloi S., and Elmore E. Low doses of diagnostic energy x-rays protect against neoplastic transformation in vitro. International Journal of Radiation Biology 2003, nr 79, s. 235-240.
  • 36. Renan M.J. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol. Carcinogenesis 1993, nr 7, s. 139-146.
  • 37. Robinson V.C., Upton A.C. Competing-risk analysis of leukaemia and non-leukaemia mortality in X-irradiated male RF mice. J. Natl. Cancer Inst. 1978, nr 60, s. 995-1007.
  • 38. Scott B.R., Haque M., Palma J.D. Biological basis for radiation hormesis in mammalian cellular communities. Int. J. of Low Radiation 200, nr 4/1
  • 39. Shore R.E., Hildreth N., Woodard E., Dvoretsky P., Hempelmann L., Pasternack B. Breast cancer among women given X-ray therapy for acute postpartum mastilis. J. Natl. Cancer Inst. 1986, nr 77, s. 689-696.
  • 40. Shuryak I., Hahnfeldt P., Hlathy L., Sachs R. K., Brenner D. J. A new view of radiation-induced cancer: integrating short- and long-term processes (Part I). Radiat. Environ. Biophys. 2009, (Springer).
  • 41. Simmons J.A., Watt D.E. Radiation Protection Dosimetry - a radical reappraisal. Medical Physics Publishing, Madison 1999.
  • 42. Trivedi K.S. Probability and Statistics with Reliability, Queueing, and Computer Science Applications, John Wiley & Sons, Inc. New York 2002.
  • 43. Ullrich R.L. and Storer J.B. Influence of irradiation on the development of neoplastic disease in mice. III. Dose-rate effects. Radiation Research 1979, nr 80, s. 325-342.
  • 44. Ulsh B.A. Checking the foundation: recent radiobiology and the linear no-threshold theory. Health Physics 2010, nr 99, z. 6, s. 747-758.
  • 45. UNSCEAR Genetic and somatic effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation 1986 Report to the General Assembly, with annexes. Annex B, part III and part IV, United Nations, New York 1986.
  • 46. UNSCEAR Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation 1994 Report to the General Assembly, with annexes. Annex A: Epidemiological studies of radiation carcinogenesis, United Nations, New York 1994.
  • 47. UNSCEAR Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation (Report to the General Assembly with Scientific Annexes) Annex I, United Nations, New York 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS1-0045-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.