PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase locked loop and synchronization methods for grid-interfaced converters: a review

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Metody synchronizacji i PLL w przetwornikach sieciowych - przegląd
Języki publikacji
EN
Abstrakty
EN
Phase locked loop and synchronization techniques are one of the most important issues for operating grid-interfaced converters in practical applications, which involve Distributed Power Generation Systems, Flexible AC Transmission Systems (FACTS), and High Voltage Direct Current (HVDC) Transmission, and so on. This paper presents a comprehensive review of the recently developed phase locked loop and synchronization methods, then a comparison and selection guide are provided. Finally, a list of more than 40 technical papers is also appended for a quick reference.
PL
Techniki PLL i synchronizacji są ważnymi elementami przetworników w systemach sieciowych, takich jak: rozproszonych systemach mocy, FACTs czy HVDC. Artykuł przedstawia przegląd tego typu metod a następnie porównanie tych metod. Na końcu ponad 40 podstawowych artykułów z tej tematyki jest przedstawionych.
Rocznik
Strony
182--187
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
autor
autor
Bibliografia
  • [1] E. V. Appleton. Automatic synchronization of triode oscillators. Proc. Cambridge Phil. Soc, Vol. 21, No. 3, pp. 231, 1923
  • [2] H. de Bellescize. La reception synchrone. Onde Electr., 11, pp. 230-240, 1932.
  • [3] A. B. Gregene, H. R. Camenzind. Frequency-selective integrated circuits using phase-lock techniques. IEEE Journal of Solid-State Circuits, Vol.4, No.4, pp. 216-225, 1969.
  • [4] S. L. Goldman. Second-order phase-lock-loop acquisition time in the presence of narrow-band Gaussian noise. IEEE Trans. Communications, Vol. 21, No.4, pp. 297-300, 1973
  • [5] M. Moeneclaey. The optimum closed-loop transfer function of a phase-locked loop used for synchronization purposes. IEEE Trans. Communications. Vol.31, No.4, pp.549-553, 1983.
  • [6] M. T. Hill, A frequency steered phase-locked loop. IEEE Trans. Communications. Vol. 45, No.6, pp. 737-743, 1997
  • [7] Nikos Margaris, Vassilios Petridis, D. Efthymiatos. Phase-locked loop control of a nonlinear DC motor. IEEE Trans. Industrial Electronics, Vol. 29, No.1, pp 91-93, 1982.
  • [8] Ching-Tsai Pan, Emily Fang, A phase-locked- loop-assisted internal model adjustable speed controller for BLDC motors. IEEE Trans. Industrial Electronics, Vol. 55, No.9, pp 3415- 3425, 2008.
  • [9] Mu-Ping Chen, Jan-Ku Chen, Katsuaki Murata, et al. Surge analysis of induction heating power supply with PLL. IEEE Trans. Power Electronics, Vol. 16, No.5, pp. 702-709, 2001.
  • [10] Hidekazu Miura, Shinsuke Arai, Fumihiro Sato, et al. A synchronous rectification using a digital PLL technique for contactless power supplies. IEEE Trans. Magnetics, Vol. 41, (10), pp. 3997-3999. 2005.
  • [11] Se-Kyo Chung. A phase tracking system for three phase utility interface inverters. IEEE Trans. Power Electronics, Vol. 15, No.3, pp. 431-438, 2000.
  • [12] Kaura Vikram, Blasko Vladimir. Operation of a phase locked loop system under distorted utility conditions. IEEE Trans, Industry Applications, Vol. 33, No.1, pp. 58-63, 1997.
  • [13] S. M. Silva, B. M. Lopes, B. J. C. Filho, et al. Performance evaluation of PLL algorithms for single-phase grid-connected systems, IAS2004, pp. 2259-2263, 2004
  • [14] L. Rolim, D. Costa, M. Aredes. Analysis and software implementation of a robust synchronizing PLL circuit based on the pq theory. IEEE Trans. Industrial Electronics, Vol. 53, No.6, pp. 1919-1926, 2006.
  • [15] Rodriguez Pedro, Pou Josep, Bergas Joan, et al. Decoupled double synchronous reference frame PLL for power converters control. IEEE Trans. Power Electronics, Vol. 22, No.2, pp. 584-592, 2007.
  • [16] P. Rodriguez, A. Lunar, R. Teodorescu, et al. Fault ridethrough capability implementation in wind turbine converters using a decoupled double synchronous reference frame PLL. European Conference on Power Electronics and Applications, pp. 1-10, 2007.
  • [17] X. Yuan, J. Allmeling, W. Merk, et al. Stationary-frame generalized integrators for current control of active power filters with zero steady state error for current harmonics of concem under unbalanced and distorted operation conditions. IEEE Trans. Industry Applications, Vol. 38, No.2, pp. 523-532, 2002.
  • [18] Bojoi Radu lustin, Griva Giovanni, Bostan Valeriu, et al. Current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame. IEEE Trans. Power Electronics, Vol. 20, No.6, pp. 1402-1412, 2005.
  • [19] P. Rodriguez, R. Teodorescu, I. Candela, et al. New Positive-sequence Voltage Detector for Grid Synchronization of Power Converters under Faulty Grid Conditions. IEEE Power Electronics Specialists Conference, pp. 1-7, 2006.
  • [20] P. Rodriguez, A. Lunar, R. Teodorescu, et al. Advanced grid synchronization system for power converters under unbalanced and distorted operating conditions. IEEE Industrial Electronics Conference, pp. 5173-5178, 2006.
  • [21] M. Ciobotaru, R. Teodorescu, F. Blaabjerg. A new single-phase PLL structure based on second order generalized integrator. IEEE Power Electronics Specialists Conference, pp. 1-6, 2006.
  • [22] M. K. Ghartemani, M. R. Iravani. A nonlinear adaptive filter for online signal analysis in power systems applications. IEEE Trans. Power Delivery, 2002, Vol. 17, No.2, pp. 617-622, 2002.
  • [23] M. K. Ghartemani, M. R. Iravani. A signal processing module for power system applications. IEEE Trans. Power Delivery, Vol. 18, No.4, pp. 1118-1126, 2003.
  • [24] M. K. Ghartemani, M. R. Iravani. A method for synchronization of power electronic converters in polluted and variable- frequency environments. IEEE Trans. Power Systems, Vol. 19, No.3, pp. 1263-1270, 2004.
  • [25] M. K. Ghartemani. A novel three-phase magnitude-phase-locked loop system. IEEE Trans. Circuits and Systems, Vol.53, No.8, pp. 1792-1802, 2006.
  • [26] A. K. Ziarani, M. Karimi Ghartemani. On the equivalence of three independently developed phase-locked loops," IEEE Trans, on Automation Control, Vol. 50, No.12, pp. 2021-2027, 2005.
  • [27] B. Wu, M. Bodson. A magnitude/phase locked loop approach to parameter estimation of periodic signals. IEEE Trans. Automation Control, Vol. 48, No.4, pp. 612-618, 2003.
  • [28] M. K. Ghartemani, H. Karimi, M. R. Iravani. A magnitude phase-locked loop system based on estimation of frequency and in-phase quadrature-phase amplitudes. IEEE Trans. Industrial Electronics, Vol. 51, No.2, pp. 511-517, 2004.
  • [29] Shinji Shinnaka. A new frequency-adaptive phase-estimation method based on a new PLL structure for single-phase signals. IEEE Power Conversion Conference, pp. 193-198, 2007.
  • [30] Shinji Shinnaka. A robust single-phase PLL system with stable and fast tracking. IEEE Trans. Industry Applications, Vol. 44, No.2, pp. 624-633, 2008.
  • [31] Shinji Shinnaka. New mirror-phase vector control for sensorless drive of permanent-magnet synchronous motor with pole saliency. IEEE Trans. Industry Applications, Vol. 40, No.2, pp. 599-606, 2004.
  • [32] H. S. Timorabadi, F. P. Dawson. A wide-range synchronization system for ac power systems. IEEE International Symposium on Industrial Electronics, 3, pp. 1667-1672, 2006.
  • [33] B. Han, B. Bae. Novel phase-locked loop using adaptive linear combiner. IEEE Trans. Power Delivery, Vol. 21, No.1, pp. 513-514, 2006.
  • [34] Stjepan Pavljasevic, Francis Dawson. Synchronization to disturbed utility-network signals using a multirate phase-locked loop. IEEE Trans. Industrial Electronics, Vol. 53, No.5, pp. 1410-1417, 2006.
  • [35] Sami Valiviita, Seppo Ovaska. Delayless method to generate current reference for active filters. IEEE Trans. Industrial Electronics, Vol. 45, No.4, pp. 559-567, 1998.
  • [36] Dragan Jovcic. Phase locked loop system for FACTS. IEEE Trans. Power Systems, Vol. 18, No. 3, pp. 1116-1124, 2003.
  • [37] J. W. Choi, Y. K. Kim, H. G. Kim. Digital PLL control for single-phase photovoltaic system. IEE Proceedings Electric Power Applications, Vol. 153, No.1, pp. 40-46, 2006.
  • [38] Morris Brenna, George C. Lazaroiu, Gabrio Superti-Furga.and Enrico Tironi. Bidirectional front end converter for DG with disturbance insensitivity and islanding-detection capability. IEEE Trans. Power Delivery, Vol. 23, No.2: 907-914, 2008.
  • [39] J. Svensson. Synchronization methods for grid-connected voltage source converters. Proc. Inst. Elect. Eng. Generation, Transmission, Distribution, Vol. 148, pp. 229-235, 2001.
  • [40] H. S. Song, K. Nam. Instantaneous phase-angle estimation algorithm under unbalanced voltage-sag conditions. Proc. Inst. Elect. Eng. Generation, Transmission, and Distribution, Vol. 147, pp. 409-415, 2000.
  • [41] Pedro Rodriguez, Adrian V. Timbus, Remus Teodorescu, et al. Flexible active power control of distributed power generation systems during grid faults. IEEE Trans. Industrial Electronics, 2007, Vol. 54, No.5, pp. 2583-2592, 2007.
  • [42] Maria Isabel Milanes Montera, Enrique Romero Cadaval, Fermin Barrero Gonzalez. Comparison of control strategies for shunt active power filters in three-phase four-wire systems. IEEE Trans. Power Electronics, Vol. 22, No.1, pp. 229-236, 2007.
  • [43] H. S. Timorabadi, F. P. Dawson. A three-phase frequency adaptive digital phase locked loop for measurement, control, and protection in power systems. Fourth Power Conversion Conference, Nagoya, pp. 183-190, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS1-0044-0085
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.