PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Adaptive passivity-based control of PEM fuel cell/battery hybrid power source

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Adaptacyjny, bierny sterownik dla hybrydowego źródła mocy
Języki publikacji
EN
Abstrakty
EN
In this paper, a DC hybrid power source composed of PEM fuel cell as main source, Li-ion battery storage as transient power source and their power electronic interfacing is modelled based on Euler-Lagrange framework. Subsequently, Adaptive Passivity Based Controllers are synthesized using the energy shaping and damping injection techniques. In addition, the power management system is designed in order to manage power flow between components. The results show that the outputs of hybrid system have good tracking response, Iow overshoot, short settling time and zero steady-state error.
PL
Przedstawiono hybrydowy źródło DC składające się z ogniwa paliwowego typu PEM, baterii litowej i układu elektronicznego. Przeprowadzono syntezę adaptacyjnego pasywnego sterownika przy wykorzystaniu techniki kształtowania energii i tłumionego wtrysku. Dodatkowo kontroluje się przepływ mocy między komponentami. Otrzymano układ hybrydowy z dobrym śledzeniem obciążenia, małym przeregulowaniem i krótkim czasem ustalania.
Rocznik
Strony
164--171
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
autor
  • Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran, tofighi@iust.ac.ir
Bibliografia
  • [1] Wang C., Nehrir M.H., Shaw S.R. Dynamic models and model validation for PEM fuel cells using electrical circuits. IEEE Trans Energy Convers., 20 (2005), No. 2, 442-51.
  • [2] Jiang Z., Dougal R.A. A hybrid fuel cell power supply with rapid dynamic response and high peak-power capacity. LEEE Applied Power Electronics Conference and Exposition, (2006), 1250-1255.
  • [3] Andujar J.M., Segura M., Vasallo J. A suitable model plant for control of the set fuel cell DC/DC corwerter. Renew. Energy, 33 (2008), No. 4, 813-826.
  • [4] Sharifi Asl S.M., Rowshanzamir S., Eikani M.H. Modelling and simulation of the steady-state and dynamic behavior of a PEM fuel cell. Energy, 35 (2010), No. 4, 1633-1646.
  • [5] Khan M.J., Iqbal M.T., Dynamic modeling and simulation of a small wind-fuel cell hybrid energy system. Renew. Energy, 30 (2005), No. 3, 421-439.
  • [6] Amirabadi M., Farhangi S.H. Fuzzy control of hybrid fuel cell/battery power source in electric vehicle. IEEE Conference on Industrial Electronics and Applications, (2006), 1-5.
  • [7] Wang C., Nehrir M.H., Gao H. Control of PEM fuel celi distributed generation systems. IEEE Trans on Energy Convers., 21(2006), No. 2, 586-595.
  • [8] Uzunoglu M., Alam M.S. Dynamic modeling, design ani simulation of a PEM fuel cell/ultra-capacitor hybrid system for vehicular applications. Energy Convers. Manage., 48 (2007), No. 5, 1544-1553.
  • [9] Skvarenina T.L. The Power Electronics Handbook; CRC Press, 2002
  • [10] Jiang Z., Dougal R.A. A compact digitally controlled fuel cell/battery hybrid power source. IEEE Trans Ind. Elec, 53 (2006), No. 4, 1094-1104.
  • [11] Li C.H., Zhu X.J., Cao G.Y., Sui S., Hu M.R. Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology. Renew. Energy, 34 (2009), No. 3, 815-826.
  • [12] Gencoglu M.T., Ural Z. Design of a PEM fuel cell system for residential application. J. Hydrogen Energy, 34 (2009), No. 12, 5242-5248.
  • [13] Khan M.J., Iqbal M.T. Dynamic modeling and simulation of a fuel cell generator. Fuel Cells, 5 (2004), No.1, 97-104.
  • [14] El-Sharkh M.Y., Rahman A., Alam M.S., Sakla A.A., Byrne P.C., Thomas T. Analysis of active and reactive power control ofa stand-alone PEM fuel celi power plant. IEEE Trans. Pom Systems, 19 (2004), No.4, 2022-2028.
  • [15] Li Y.H., Choi S.S., Rajakaruna S. An analysis of the control and operation of a solid oxide fuel-cell power plant in an isolated system. IEEE Trans. Energy Convers., 20 (2005), No. 2, 381- 387.
  • [16] Onar O.C., Uzunoglu M., Alam M.S. Dynamic modeling, design and simulation of a wind/fuel cell/ultra-capacitor-based hybrid power generation system. J. Power Sources, 161 (2006), No, 2, 707-722.
  • [17] Batlle C., Doria-Cerezo A., Fossas E. Bidirectional power flow control of a power converter using passive hamiltonian techniques. Int. J. Circ. Theor. Appl., 36 (2008), 769-788.
  • [18] Kim D.E., Lee D.C. Feedback Linearization Control of Three- Phase AC/DC PWM Converters with LCL Input Filters, The 7th International Conference on Power Electronics, (2007), 766-771.
  • [19] Mazumder S.K., Nayfeh A.H., Borojevic D. Robust control of parallel DC-DC buck converters by combining integral-variable-structure and multiple-sliding-surface control schemes, IEEE Trans. Power Elec, 17 (2002), No. 3, 428-437.
  • [20] Kim D.E., Lee D.C., Feedback linearization control of three-phase AC/DC PWM converters with LCL input filters. 7th International conference on power electronies, (2007), 766-771
  • [21] Vmquez' N., Hernandez' C., Alvarez J., Arau J. Sliding mode control for DC/DC converters: A new sliding surface. IEEE International Symposium on Industrial Electronics, 1 (2003), 422-426.
  • [22] Leyva R., Cid-Pastor A., Alonso C., Queinnec I., Tarbouriech S., Martinez-Salamero L. Passivity-based integral control of a boost converter for large-signal stability. IEE Proc-Control TheoryAppl. 153 (2006), No. 2, 139-146.
  • [23] Tofighi A., Kalantar M. Applying passivity-based control for the DC/DC converter of PEM fuel cell. IEEE 1st Power Electronic & Drive Systems & Technologies Conference, (2010), 439-444.
  • [24] Ortega R., Van Der Schaft A., Maschke B., Escobar G. Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems. Automatica, 381 (2002), No. 4, 585-596.
  • [25] Scherpen J.M.A., Jeltsema D., Klaassens J.B. Lagrangian modeling of switching electrical networks. Systems & Control Letters, 48 (2003), No. 5, 365-374.
  • [26] A. Doria-Cerezo, Modeling, Simulation and control of a Doubly-Fed Induction Machine Controlled by a Back-to-Back Converter, PhD. Destination, 2006, Technical University of Catalonia.
  • [27] Kwasinski A., Krein P.T. Passivity-based control of buck converters with constant-power loads. IEEE Power Electronics Specialists Conference, (2007), 259-265.
  • [28] Wang P., Wang J., Xu Z. Passivity-based control of three phase voltage source PWM rectifiers based on PCHD model. IEEE International Conference on Electrical Machines and Systems, (2008), 1126-1130.
  • [29] Lee T.S. Lagrangian modeling and passivity-based control of three-phase AC/DC voltage-source converters. IEEE Trans. Ind. Elec, 51 (2004), No. 4, 892-902.
  • [30] Komurcugil H. Steady-state analysis and passivity-based control of single-phase PWM current-source inverters. IEEE Trans. Ind. Elec, 57 (2010), No. 3, 1026-1030.
  • [31] Ayad M.Y., Becherif M., Henni A., Aboubou A., Wack M., Laghrouche S. Passivity-based control applied to DC hybrid power source using fuel celi and supercapacitors. Energy Convers. Manage., 51 (2010), No. 7, 1468-1475.
  • [32] Sira-Ramirez H., Rios-Bolivar M., Zinober A.S.I. Adaptive dynamical input-output linearization of DC to DC Power corwerters: a backstepping approach. Int. J. Robust and Nonlinear Control, 7 (1997), 279-296.
  • [33] Sira-Ramirez H., Ortega R. Garci-Esteban M. Adaptive passivity-based control of average DC-to-DC power converters models. Int. J. Adapt. Control Signal Process 1998; 12: 63-80.
  • [34] Jeong K.S., Lee W.Y., Kim C.S. Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics. J. Power Sources, 145 (2005), No. 2, 319-326.
  • [35] Khateeb S..A, Farid M.M., Selman J.R., Al-Hallaj S. Mechanical-electrochemical modeling of Li-ion battery designed for an electric scooter. J. Power Sources, 158 (2006), No. 1, 673-678.
  • [36] Durr M., Cruden A., Gair S., McDonald J.R. Dynamic model of a lead acid battery for use in a domestic fuel cell system. J. Power Sources, 161 (2006), No. 6, 1400-1411.
  • [37] Chen M., Rinco'n-Mora G.A. Accurate electrical battery model capable of predieting runtime and I-V performance. IEEE Trans. Energy Convers., 21 (2006), No. 2, 504-511.
  • [38] Escobar G., Ortega R., Sira-Ramirez H., Vilain J.P., Zein I. An experimental comparison of several nonlinear controllers for power converters. IEEE Control Systems Magazine, 19 (1999), No. 1, 66-82.
  • [39] Specifications of Polymer Lithium Ion Battery, Model: PL-383562.
  • [40] Ho H.F., Cheng K.W.E. Adaptive passivity-based control of extended-period quasi-resonant converters, IEEE International Conference on Power Electronics Systems and Applications, (2006), 260-265.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS1-0044-0082
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.