Jan ZWOLAK^{*}, Marek MARTYNA^{**}

ANALIZA NAPRĘŻEŃ KONTAKTOWYCH I NAPRĘŻEŃ ZGINAJĄCYCH WYSTĘPUJĄCYCH W PRZEKŁADNIACH ZĘBATYCH POWER SHIFT

ANALYSIS OF CONTACT STRESS AND BENDING STRESS OCCURING IN TOOTHS OF GEAR TRANSMISSION POWER SHIFTS

Słowa kluczowe:

koła zębate, przekładnie zębate power shift, naprężenia kontaktowe, naprężenia zginające, badania numeryczne

Key words:

gears teeth, gears transmissions power shift, contact stress, bending stresses, numerical study

Streszczenie

W pracy przedstawiono zagadnienia związane z naprężeniami kontaktowymi i z naprężeniami zginającymi, uzyskanymi w badaniach numerycz-

^{*} Uniwersytet Rolniczy w Krakowie, e-mail: jazwol@ar.krakow.pl

^{**} HSW S.A. – Biuro Rozwoju, e-mail: m.martyna@hw.pl

nych przekładni zębatej power shift. Badana przekładnia składa się z czternastu kół, które tworzą dziesięć par zębatych. Analizowano wpływ współczynnika przesunięcia zarysu oraz modułu na wartość naprężeń kontaktowych i naprężeń zginających.

WPROWADZENIE

W przekładniach zębatych stosowanych w układach napędowych maszyn roboczych, jak np. w ładowarkach kołowych czy ciągnikach gąsienicowych, występują zmienne wartości momentów obrotowych, wynikające z charakteru pracy tych maszyn. Wywołują one zmienne wartości naprężeń kontaktowych i naprężeń zginających w poszczególnych kołach zębatych tworzących strukturę rozpatrywanej przekładni.

Występowanie naprężeń kontaktowych w odpowiednio długim czasie prowadzi do zmęczeniowego zużywania powierzchniowego warstwy wierzchniej boku zęba, objawiającego się efektem końcowym w postaci pittingu. Natomiast naprężenia zginające powodują zmęczenie objętościowe materiału u podstawy zęba, prowadzące do pękania, a następnie do złamania zęba [L. 1, 2].

Przebieg zmęczeniowego zużywania powierzchniowego, jak i zmęczeniowego niszczenia objętościowego przez złamanie przy określonym obciążeniu zewnętrznym, uzależniony jest od wielu parametrów geometrycznych współpracujących ze sobą kół zębatych. Uzależniony jest także w dużym stopniu od materiału, jak i od stosowanej technologii w procesie ich obróbki wykończeniowej.

Oprócz wymienionych czynników wpływających na zmęczeniowe zużywanie powierzchniowe należy jeszcze dodać warunki smarowania występujące w strefie międzyzębnej współpracujących kół zębatych podczas eksploatacji.

W prezentowanej pracy wykorzystano wyniki doświadczalnych badań własnych w zakresie zmęczeniowej wytrzymałości powierzchniowej $\sigma_{H \ lim}$ oraz w zakresie zmęczeniowej wytrzymałości objętościowej $\sigma_{F \ lim}$. Wyznaczone wartości $\sigma_{H \ lim}$ i $\sigma_{F \ lim}$ wykorzystano w systemie komputerowym projektowania przekładni zębatych.

System ten umożliwia prowadzenie obliczeń geometrycznych i wytrzymałościowych oraz ich optymalizację ze względu na wybrane kryteria. W dalszej części pracy rozważane będą jedynie badania numeryczne, z pominięciem badań doświadczalnych.

PRZEDMIOT BADAŃ

Badania numeryczne prowadzono na 8-stopniowej przekładni zębatej power shift, przeznaczonej do układu napędowego ładowarki kołowej. Schemat kinematyczny w układzie osiowym rozważanej przekładni przedstawiono na **Rysunku 1.**

Rys.1. Schemat kinematyczny w układzie osiowym przekładni zębatej power shift Fig. 1. Kinematic diagram in axial gears transmissions power shift

Symbole występujące na **Rysunku 1** oznaczają: z_1 , z_2 ,..., z_{14} – koła zębate, AB, CD,..., MN – wałki, P – sprzegło kierunkowe jazdy do przo-

du, W – sprzęgło kierunkowe jazdy do tyłu, S_1 , ..., S_4 – sprzęgła do włączania poszczególnych biegów. W celu ułatwienia zapisu łańcucha kinematycznego utworzonego przez koła zębate na poszczególnych biegach przedstawiono schemat kinematyczny w układzie promieniowym rozpatrywanej przekładni na **Rysunku 2.**

Rys. 2. Schemat kinematyczny w układzie promieniowym przekładni zębatej power shift

Fig. 2. Kinematic diagram in radian gears transmissions powers shift

Na podstawie **Rysunku 1** i **2** utworzone pary zębate z odpowiednich kół, będących w ciągłym zazębieniu, dają się zapisać jako przełożenia na poszczególnych biegach:

$i_1 = \frac{z_3}{z_1} \bullet \frac{z_5}{z_3} \bullet \frac{z_9}{z_7} \bullet \frac{z_{13}}{z_9}$	$i_5 = \frac{z_{14}}{z_2} \bullet \frac{z_4}{z_{14}} \bullet \frac{z_5}{z_3} \bullet \frac{z_9}{z_7} \bullet \frac{z_{13}}{z_9}$	
$i_2 = \frac{z_3}{z_1} \bullet \frac{z_{10}}{z_3} \bullet \frac{z_9}{z_{12}} \bullet \frac{z_{13}}{z_9}$	$i_6 = \frac{z_{14}}{z_2} \bullet \frac{z_4}{z_{14}} \bullet \frac{z_{10}}{z_3} \bullet \frac{z_9}{z_{12}} \bullet \frac{z_{13}}{z_9}$	
$i_3 = \frac{z_3}{z_1} \bullet \frac{z_5}{z_3} \bullet \frac{z_8}{z_6} \bullet \frac{z_{13}}{z_9}$	$i_7 = \frac{z_{14}}{z_2} \bullet \frac{z_4}{z_{14}} \bullet \frac{z_5}{z_3} \bullet \frac{z_8}{z_6} \bullet \frac{z_{13}}{z_9}$	(1)
$i_4 = \frac{z_3}{z_1} \bullet \frac{z_{10}}{z_3} \bullet \frac{z_8}{z_{11}} \bullet \frac{z_{13}}{z_9}$	$i_8 = \frac{z_{14}}{z_2} \bullet \frac{z_4}{z_{14}} \bullet \frac{z_{10}}{z_3} \bullet \frac{z_8}{z_{11}} \bullet \frac{z_{13}}{z_9}$	

Przełożenia całkowite: i_1 , i_2 , i_3 , i_4 , będące iloczynem przełożeń elementarnych poszczególnych par zębatych, odnoszą się do biegów jazdy do przodu. Natomiast przełożenia: i_5 , i_6 , i_7 , i_8 , dotyczą biegów jazdy do tyłu.

Wartości liczbowe przełożeń elementarnych i całkowitych (wzór 1) wykazujące różnice na poszczególnych biegach sprawiają, że zmieniają się wartości liczbowe naprężeń kontaktowych i naprężeń zginających tej samej pary zębatej, występującej w łańcuchu kinematycznym poszczególnych biegów.

SYSTEM KOMPUTEROWY W ANALIZIE NAPRĘŻEŃ ZGINAJĄCYCH I NAPRĘŻEŃ KONTAKTOWYCH

Podstawowe zagadnienia związane z obliczeniami przekładni zębatych mogą być analizowane za pomocą autorskiego systemu komputerowego **[L. 3]**. System ten umożliwia prowadzenie obliczeń geometrycznych i wytrzymałościowych z optymalizacją wielokryterialną, jak też obliczeń bez optymalizacji. Poprzez odpowiednie zadawanie danych w programie można przeprowadzać obliczenia dla różnych zestawów zmiennych decyzyjnych. W rozpatrywanym przypadku obliczenia prowadzono, traktując jako zmienne decyzyjne moduł oraz współczynniki przesunięcia zarysu. W programie aktywne były wszystkie dostępne kryteria cząstkowe oraz ograniczenia, a w analizowanych wynikach skupiono się głównie na naprężeniach zginających σ_F oraz naprężeniach kontaktowych σ_H .

Takie podejście miało na celu wygenerowanie zestawów: moduł, współczynniki przesunięcia zarysu oraz odpowiadających im naprężeniom zginającym σ_F oraz kontaktowym σ_H , aby pokazać ich wzajemne relacje. Bez wykorzystania optymalizacji byłoby to bardzo trudne zadanie z powodu złożoności problemu oraz skomplikowanego obszaru dopuszczalnego. Ze względu na brak danych rzeczywistych w obliczeniach przyjęto 5 punktów startowych, które wprawdzie nie spełniały wszystkich ograniczeń (całkowita liczba ograniczeń 574), ale pozwoliły na realizację obliczeń i znalezienie zadowalających rozwiązań z obszaru dopuszczalnego.

ANALIZA OBCIĄŻEŃ PRZEKŁADNI

Analizę obciążeń przekładni przeprowadzono przy momencie wejściowym M = 1500 Nm oraz prędkości obrotowej n = 1800 min⁻¹. Wykonano obliczenia naprężeń zginających σ_F oraz naprężeń kontaktowych σ_H wszystkich par zębatych tworzących strukturę rozpatrywanej przekładni. Wyniki obliczeń (bez optymalizacji) dla jednego z punktów startowych przedstawiono w **Tabeli 1**.

Tabela 1. Naprężenia zgin	ające i naprężenia	kontaktowe w	parach zębatych	two-
rzących przekłac	lnię power shift pr	zed optymalizad	cją	

Para zębata	Naprężenia σ _F [Ν	a zginające MPa]	Naprężenia σ _H []	kontaktowe MPa]
$z_1 : z_3$	$\sigma_{F1}=419$	$\sigma_{F3} = 469$	$\sigma_{\rm H1}$ = 1191	σ _{H3} = 1196
$z_3: z_5$	$\sigma_{F3} = 469$	$\sigma_{F5}=417$	σ _{H3} = 1196	$\sigma_{\rm H5}$ = 1108
$z_7: z_9$	$\sigma_{F7}=480$	$\sigma_{F9}=563$	$\sigma_{\rm H7}$ = 1382	σ _{H9} = 1370
$z_9: z_{13}$	$\sigma_{F9}=563$	$\sigma_{F13} = 494$	σ _{H9} = 1370	$\sigma_{H13} = 1172$
$z_3: z_{10}$	$\sigma_{F3} = 469$	$\sigma_{F10} = 425$	σ _{H3} = 1196	$\sigma_{H10} = 1224$
z_{12} : z_9	$\sigma_{F12} = 291$	$\sigma_{F9}=563$	$\sigma_{H12} = 1162$	σ _{H9} = 1370
$z_6: z_8$	$\sigma_{F6}=305$	$\sigma_{F8} = 294$	$\sigma_{\rm H6} = 1095$	$\sigma_{H8} = 1125$
z_{11} : z_8	$\sigma_{F11} = 167$	$\sigma_{F8} = 294$	$\sigma_{H11} = 897$	σ _{H8} = 1125
$z_2: z_{14}$	$\sigma_{F2}=363$	$\sigma_{F14} = 392$	σ_{H2} = 1211	$\sigma_{H14} = 1200$
$z_{14}: z_4$	$\sigma_{F14} = 392$	$\sigma_{F4} = 355$	$\sigma_{\rm H14} = 1200$	$\sigma_{\rm H4} = 1186$

 Table 1. Bending stresses and contact stress in toothed pairs forming a power shift transmissions before optimization

Z **Tabeli 1** wynika, że największe obciążenia w rozpatrywanej strukturze przekładni przenosi para zębata $z_9:z_{13}$. Natomiast para zębata $z_{11}:z_8$ w całym łańcuchu kinematycznym przekładni przenosi obciążenia najmniejsze. Maksymalne obciążenie pary zębatej $z_9:z_{13}$ wynika stąd, iż para ta jest ostatnim ogniwem przekładni w przeniesieniu momentu obrotowego na wszystkich stopniach przełożeń. Natomiast para zębata z_{11} : z_8 jest jedyną parą we wzorze (1) pozwalającym na obliczenie przełożenia i_4 oraz i_8 (stopień najwyższy przełożenia z najmniejszym momentem obrotowym), która nie występuje w obliczeniach innych przełożeń zapisanych za pomocą wzoru (1).

W dalszej analizie obciążeń wykonano obliczenia optymalizacyjne naprężeń zginających σ_F oraz naprężeń kontaktowych σ_H , w zależności od wartości liczbowej modułu i współczynnika przesunięcia zarysu. Wybrane wyniki tych obliczeń przedstawiono w tabeli 2.

Tabela 2.	Naprężenia zginające i naprężenia kontaktowe w parach zębatych two-
	rzących przekładnię power shift po optymalizacji

Para zębata	Naprężenia zginające σ _F [MPa]		Naprężenia kontaktowe σ _H [MPa]		
z ₁ :z ₃	$\sigma_{F1} = 310$ $\sigma_{F3} = 346$		$\sigma_{\rm H1} = 1041$	σ _{H3} = 1048	
$z_3: z_5$	σ _{F3} = 346	$\sigma_{F5} = 306$	$\sigma_{H3} = 1048$	$\sigma_{\rm H5} = 974$	
$z_7: z_9$	σ _{F7} = 418	$\sigma_{F9}=505$	$\sigma_{\rm H7} = 1386$	σ _{H9} = 1360	
$z_9: z_{13}$	$\sigma_{F9}=505$	$\sigma_{F13} = 424$	σ _{H9} = 1360	$\sigma_{H13} = 1138$	
$z_3 : z_{10}$	σ _{F3} = 346	$\sigma_{F10} = 314$	$\sigma_{\rm H3} = 1048$	$\sigma_{\rm H10} = 1068$	
z ₁₂ : z ₉	$\sigma_{F12} = 246$	$\sigma_{F9}=505$	$\sigma_{H12} = 1059$	σ _{H9} = 1360	
$z_6: z_8$	$\sigma_{F6}=279$	$\sigma_{F8}=268$	σ_{H6} = 1051	$\sigma_{H8} = 1093$	
$z_{11}: z_8$	$\sigma_{F11} = 166$	$\sigma_{F8} = 268$	$\sigma_{\rm H11}$ = 896	$\sigma_{\rm H8} = 1093$	
$z_2: z_{14}$	$\sigma_{F2} = 273$	$\sigma_{F14} = 293$	σ_{H2} = 1059	$\sigma_{H14} = 1040$	
$z_{14}: z_4$	$\sigma_{F14} = 293$	$\sigma_{F4} = 268$	$\sigma_{\rm H14} = 1040$	$\sigma_{\rm H4} = 1023$	

 Table 2.
 Bending stresses and contact stress in toothed pairs forming a power shift transmissions after optimization

Porównując wartości naprężeń z **Tabeli 1** i z **Tabeli 2** zauważa się, że przeprowadzona optymalizacja z udziałem modułu i współczynników korekcji pozwala na istotne zmniejszenie wartości naprężeń zginających σ_F oraz naprężeń kontaktowych σ_H .

Wartości obliczonych w procedurze optymalizacyjnej naprężeń zginających i naprężeń kontaktowych pary zębatej $z_9:z_{13}$, odniesionych do kilku wybranych wartości modułu m i współczynników korekcji x_9 oraz x_{13} przedstawiono w **Tabeli 3**.

m	X9	x ₁₃	σ_{F9}	σ_{F13}	$\sigma_{\rm H9}$	$\sigma_{\rm H13}$
7.5488	0.1484	0.5199	573	505	1383	1180
7.6079	0.1325	0.5600	555	493	1379	1163
7.6228	0.2064	0.4723	581	511	1375	1179
7.6331	0.1186	0.5713	551	490	1379	1160
7.6487	0.1588	0.5170	569	502	1367	1168
9.3806	-0.0607	0.5922	505	424	1360	1138

Tabela 3. Naprężenia zginające i kontaktowe [MPa] pary zębatej z ₉ :z ₁₃
Table 3. Bending stresses and contact stress [MPa] of the toothed pairs $z_9:z_{13}$

Na podstawie wyników z **Tabeli 3** zbudowano wykresy przedstawiające zależność naprężeń od modułu i współczynników korekcji. Naprężenia zginające w kole z₉ dla sześciu przypadków modułu i współczynnika korekcji przedstawiono na **Rysunku 3**.

Rys. 3. Naprężenia zginające σ_{F9} w kole zębatym z9 w zależności od modułu i korekcji

Fig. 3. Bending stresses σ_{F9} in the gear teeth z_9 depending on the module and the correction

Dla koła z_{13} współpracującego z kołem zębatym z_9 wykres naprężeń zginających przedstawiono na **Rysunku 4.**

Rys. 4. Naprężenia zginające σ_{F13} w kole zębatym z_{13} w zależności od modułu i korekcji

Fig. 4. Bending stresses σ_{F13} in the gear teeth z_{13} depending on the module and the correction

Wyniki z **Tabeli 3** wykorzystano także do budowy wykresów ilustrujących zależności naprężeń kontaktowych σ_H od wartości modułu i współczynników korekcji. Jedną z takich zależności przedstawiono na **Rysunku 5.**

Naprężenia kontaktowe występujące w kole współpracującym z_{13} , w postaci wykresu przedstawiono na **Rysunku 6.**

Wykresy na **Rysunkach: 3, 4, 5 i 6** wskazują na zależność naprężeń zginających σ_F , jak i naprężeń kontaktowych σ_H od wartości modułu m i współczynnika korekcji x.

Rys. 5. Naprężenia kontaktowe σ_{H9} w kole zębatym z₉ w zależności od modułu i korekcji

Fig. 5. Contact stress σ_{H9} in the gear teeth z_9 depending on the module and the correction

Rys.6. Naprężenia kontaktowe $\sigma_{\rm H13}$ w kole zębatym z_{13} w zależności od modułu i korekcji

Fig. 6. Contact stress σ_{H13} in the gear teeth z_{13} depending on the module and the correction

PODSUMOWANIE

Pary zębate występujące w analizowanej przekładni power shift przenoszą obciążenia o znacznym stopniu zróżnicowania, które generują także odpowiednio zmienne naprężenia zginające σ_F i naprężenia kontaktowe σ_H . O dużym zróżnicowaniu naprężeń zginających i naprężeń kontaktowych poszczególnych par zębatych dowodzą wyniki obliczeń zamieszczone w **Tabelach 1** i **2.** Wśród tych wyników zauważa się, że większe zróżnicowanie w poszczególnych parach zębatych występuje w naprężeniach zginających, natomiast mniejsze w naprężeniach kontaktowych. Warto tu dostrzec i to, że w parze zębatej z₁₁:z₈ zęby koła zębatego z₁₁ mają najniższą wartość naprężeń zginających i naprężeń kontaktowych. Wynika to stąd, że koło z₁₁ tworzy tylko jedną parę zębatą z kołem z₈, która znajduje się w łańcuchu kinematycznym biegu IV i biegu VIII o małej wartości przenoszonego momentu obrotowego.

Analiza wyników zamieszczonych w **Tabeli 3** oraz wykresów na **Ry-sunkach: 3, 4, 5** i **6** wskazuje, że wartość modułu i współczynnika korekcji w większym stopniu wpływa na zmianę naprężeń zginających aniżeli naprężeń kontaktowych. Ocena takiego wpływu w wymiarze ilościowym umożliwia konstruktorowi kształtowanie zasobu funkcjonalności przekładni zębatej na etapie projektowania.

LITERATURA

- 1. Muller L.: Przekładnie zębate, projektowanie. WNT, Warszawa 1996.
- 2. Jaśkiewicz Z., Wąsiewski A.: Przekładnie walcowe. WKŁ, Warszawa 1992.
- 3. Martyna M., Zwolak J.: Program PRZEKLADNIA (http://www.gearbox.com.pl).

Recenzent: Andrzej KĘSY

Summary

The study summarises the problems associated with contact stress and bending stress highlighted in the course of numerical tests of a power shift incorporating fourteen wheels, making up ten toothed pairs. The study investigates the influence of the addendum modification coefficient and of the module on the value of contact stress and bending stresses.