Wojciech ŻÓRAWSKI*

WŁAŚCIWOŚCI POWŁOK NATRYSKANYCH PLAZMOWO I HVOF

PROPERTIES OF PLASMA AND HVOF SPRAYED COATINGS

Słowa kluczowe:

natryskiwanie plazmowe, HVOF, powłoka kompozytowa, zużycie, zatarcie

Key words:

plasma spraying, HVOF, composite coating, wear, scuffing

Streszczenie

W artykule przedstawiono wyniki badań właściwości natryskanych plazmowo i naddźwiękowo powłok NiCrBSi/Fe₂O₃. Zastosowana technika natryskiwania ma wpływ na skład fazowy natryskanych powłok. Powłoki natryskane naddźwiękowo miały znacznie mniejszą porowatość niż powłoki natryskiwane plazmowo. Na podstawie przeprowadzonych badań można stwierdzić, że powłoki natryskane naddźwiękowo wykazały większą odporność na zużywanie ścierne. Wraz z zawartością Fe₂O₃ w mieszaninie malała odporność powłok na zużycie. Powłoki natryskane pla-

^{*} Politechnika Świętokrzyska w Kielcach, e-mail: ktrwz@tu.kielce.pl.

zmowo miały wyższą odporność na zatarcie niż powłoki natryskane naddźwiękowo.

WPROWADZENIE

Praktyczne wykorzystanie strumienia plazmy umożliwiło zastosowanie wielu nowych materiałów, zwłaszcza tych o wysokiej temperaturze topnienia. Nowe możliwości otrzymywania powłok stworzyło natryskiwanie naddźwiękowe HVOF (High Velocity Oxyfuel) wprowadzone do przemysłu pod koniec lat 80. ubiegłego stulecia. Był to rezultat poszukiwań rozwiązań ukierunkowanych na zwiększenie energii kinetycznej natryskiwanych cząstek, które doprowadziły do opracowania nowej generacji pistoletów, w których wypływający strumień osiąga prędkości naddźwiękowe. W najnowszych rozwiązaniach sięga on 2900 m/s. Bardzo wysoka prędkość strumienia umożliwia uzyskanie przez cząstki materiału powłokowego bardzo dużej energii kinetycznej przy jego umiarkowanym nagrzaniu. Ponieważ czas przebywania cząstek w strumieniu gazów jest bardzo krótki, ogranicza to w znacznym stopniu proces ich utlenienia i powstawania niekorzystnych zmian fazowych, które powstają podczas natryskiwania plazmowego **[L. 1–3]**.

Bardzo szeroki zakres materiałów stosowany w natryskiwaniu plazmowym i naddźwiękowym umożliwia natryskiwanie mieszanin proszków i otrzymywanie powłok o własnościach, które są niemożliwe do otrzymania innymi metodami. Należą do nich powłoki kompozytowe zawierające smar stały [**L. 4–6**]. Celem niniejszej pracy było zbadanie właściwości natryskanych plazmowo i naddźwiękowo powłok kompozytowych NiCrBSi/Fe₂O₃.

EKSPERYMENT

Jako materiał powłokowy na osnowę kompozytu zastosowano proszek NiCrBSi firmy AMIL GmbH. Drugi składnik mieszaniny stanowił oczyszczony tlenek żelazowy Fe₂O₃. Mieszaniny do natryskiwania otrzymano w wyniku mechanicznego mieszania przez okres 1 godziny proszku NiCrBSi z dodatkiem 10, 20, 30, 40 i 50% udziału objętościowego proszku Fe₂O₃. Natryskiwanie plazmowe wykonano za pomocą zestawu plazmowego Plancer współpracującego z pistoletem PN-120 oraz podajnikiem proszku Thermal Miller 1264. Jako gaz plazmotwórczy zastosowano argon z 7% dodatkiem wodoru. Powłoki natryskane HVOF

zostały nałożone za pomocą systemu do natryskiwania naddźwiękowego Diamond Jet firmy Sulcer Metco z zastosowaniem mieszaniny propanowo-tlenowej. Badania mikrotwardości, odporności na ścieranie oraz odporności na zatarcie przeprowadzono dla powłok natryśniętych plazmowo i naddźwiękowo z proszku NiCrBSi oraz wszystkich mieszanin. Analizę składu fazowego proszków oraz natryśniętych powłok przeprowadzono za pomocą dyfraktrometru D-8 Advance firmy Bruker. Pomiary porowatości wykonano dla powłok natryskanych z proszku NiCrBSi, Fe₂O₃, oraz mieszaniny proszku NiCrBSi z 50% udziałem objętościowym proszku Fe₂O₃. Badania mikrotwardości przeprowadzono na twardościomierzu firmy Zwick 3210. Pomiary porowatości wykonano na zgładach metalograficznych za pomocą mikroskopu Metaplan i analizatora obrazu Quantimet 570 color. Badania wykonano dla powłok NiCrBSi, Fe₂O₃ oraz NiCrBSi + 11,5% wt. Fe₂O₃. Dla natryskanych plazmowo i naddźwiękowo powłok z proszków NiCrBSi/Fe₂O₃ zostały przeprowadzone badania zużycia za pomocą testera tribologicznego T-05 typu rolka-klocek. Test przeprowadzono przy następujących parametrach: prędkość obrotowa rolki – 32 obr./min, obciążenie klocka – 4,9 N, czas testu - 1 h. Badania odporności na zacieranie przeprowadzono z użyciem testera tribologicznego T-09 typu Falex.

WYNIKI BADAŃ I ICH OMÓWIENIE

Badania składu fazowego

Badania składu fazowego przeprowadzono dla natryskanego proszku oraz powłok (**Tab. 1**). Umożliwiły one zidentyfikowanie przemian i różnic składu fazowego badanych materiałów w zależności od udziału składników w kompozycie oraz metody wytwarzania. W badanym proszku NiCrBSi oraz natryskanych powłok podstawową fazę stanowi nikiel, który jest głównym składnikiem natryskiwanego proszku (70,51%). Pozostałe składniki to twarde kryształy borków i krzemków, z których tylko faza Ni₂B jest obecna we wszystkich warstwach. W przypadku natryskanej plazmowo warstwy z proszku NiCrBSi nie zostały zidentyfikowane fazy Cr₃Si, Cr₅B₃, CrB. Natomiast wyniki badań natryskanej naddźwiękowo powłoki NiCrBSi nie wykazały jakościowych zmian jej składu fazowego w porównaniu ze składem fazowego proszku.

BADANY MATERIAŁ	NATRYSK	FAZY
Proszek NiCrBSi	bez natrysku	Ni(Me), Cr ₃ Si, Ni ₃₁ Si ₁₂ , Ni ₂ B, Cr ₅ B ₃ , CrB
Warstwa NiCrBSi	APS	Ni(Me), Ni ₃₁ Si ₁₂ , Fe ₂ O ₃ – maghemit, Ni ₂ B
Warstwa NiCrBSi	HVOF	$Ni(Me), Cr_3Si, Ni_{31}Si_{12}, Ni_2B, Cr_5B_3, CrB$

Tabela 1.	Analiza	fazowa	proszków	i natrysl	xanych]	powłok

 Table 1. Phase analysis of powders and sprayed coating

Mikrotwardość

Pomiary mikrotwardości powłok natryskanych cieplnie wykazują znaczny rozrzut, co jest związane z ich budową. Lamellarna struktura składa się z fazy stałej składającej się ze związków wchodzących w skład materiału powłokowego i ich odmian fazowych oraz porów. Wyniki badań będące rezultatem 10 pomiarów dla każdej powłoki są przedstawione w Tab. 2. Zmiany mikrotwardości powłok w funkcji zawartości Fe₂O₃ w mieszaninie nie pozwalają na wnioskowanie o wartości mikrotwardości powłoki na podstawie składu mieszaniny. Jest to trudne do wyjaśnienia, ponieważ można się spodziewać, że wzrost udziału Fe₂O₃ spowoduje spadek twardości badanej powłoki kompozytowej. W natryśniętych powłokach można wyróżnić trzy fazy: osnowę niklową, twarde fazy borkowe i krzemowe oraz fazę Fe₂O₃. Taki skład fazowy może być przyczyną trudności w uzyskaniu pomiaru twardości reprezentatywnego dla całej powłoki. Ponadto rzeczywisty udział objętościowy Fe₂O₃ w strukturze powłoki kompozytowej jest znacznie mniejszy. Wiąże się to również ze stratami Fe₂O₃ w czasie natryskiwania powłoki.

Tabela 2.	Wyniki pomiarów mikrotwardości natryskanych powłok
Table 2.	Results of measurements of sprayed coatings microhardness

Udział % obj.	Wartość średnia HV0,5		Odchylenie standardowe HV0,5		
Fe ₂ O ₃ w mieszaninie	Plazma	HVOF	Plazma	HVOF	
0	482,33	609,13	27,52	9,24	
10	499,67	450,73	48,43	6,39	
20	565,30	593,83	6,98	20,28	
30	529,10	696,13	4,45	7,90	
40	449,27	614,93	4,73	18,27	
50	714,37	609,80	5,99	8,35	

Porowatość

Pomiar porowatości to rezultat zapisania z każdej próbki po 10 obrazów szarych przy powiększeniu 400x, skok stolika mikroskopu 0,4 x 0,4 mm, liczba pól 10, następnie wykonania detekcji obrazów szarych, a na otrzymanych obrazach binarnych wykonano pomiary powierzchni zajętej przez porowatość oraz obliczono wartość średnią i odchylenie standardowe (**Tab. 3**).

Na podstawie przeprowadzonych badań porowatości można stwierdzić, że wszystkie powłoki natryskane naddźwiękowo mają znacznie mniejszą porowatość niż powłoki natryskane plazmowo (**Tab. 3**). Wysoka energia kinetyczna cząstek ma w tym przypadku decydującą rolę, natomiast stopień przetopienia ziaren proszku nie ma tak istotnego wpływu na tę cechę. Różnica ta jest największa w przypadku powłok otrzymanych z proszku NiCrBSi, gdzie powłoka nałożona plazmowo ma porowatość 3,24 razy większą niż powłoka natryśnięta naddźwiękowo. Różnice te wynoszą odpowiednio 2,49 dla powłok z Fe₂O₃ i 1,59 dla powłok natryśniętych z mieszaniny NiCrBSi + 50%Fe₂O₃. W przypadku natryskanych mieszanin otrzy-mane wartości porowatości są największe, a ich różnica jest najmniejsza. Widoczny jest tu wpływ niejednorodności materiału powłokowego w postaci mieszaniny składającej się z proszków o bardzo zróżnicowanej morfologii ziarna i innym rozkładzie granulometrycznym.

Dowloko	Natruckiwania	Porowatość, %		
F0w10Ka	Ivau yski wanie	Wartość średnia	Odchylenie stand.	
NiCrBSi	Plazma	16,41	2,96	
NiCrBSi	HVOF	5,06	0,89	
Fe ₂ O ₃	Plazma	11,91	0,98	
Fe ₂ O ₃	HVOF	4,78	0,93	
NiCrBSi + Fe_2O_3	Plazma	19,29	1,92	
NiCrBSi + Fe_2O_3	HVOF	12,14	1,73	

Tabela 3. Wyniki pomiarów porowatości natryskanych powłokTable 3. Results of measurements of sprayed coatings porosity

Dodatek proszku Fe₂O₃ o płatkowej budowie wpłynął negatywnie na budowę powłoki niezależnie od prędkości i temperatury strumienia cieplnego. Dlatego też w przypadku zastosowań mieszanin uzasadniona jest konieczność optymalizacji parametrów natryskiwania w celu zmniejszenia porowatości.

Odporność na ścieranie

Wyniki pomiarów ubytku masy badanych rolek z powłokami i współpracujących z nimi klockami (dla 3 powtórzeń) są przedstawione na **Rys. 1** i **Rys. 2**.

Rys. 1. Wyniki badań zużycia ściernego powłok natryskanych plazmowo Fig. 1. Results of tests of plasma sprayed coatings abrasive wear

Rys. 2. Wyniki badań zużycia ściernego powłok natryskanych naddźwiękowo Fig. 2. Results of tests of HVOF sprayed coatings abrasive wear

Otrzymane wyniki pokazują, że wzrost udziału Fe₂O₃ w mieszaninie powoduje zmniejszenie odporności na zużywanie powłok natryskiwanych plazmowo oraz naddźwiękowo. Na podstawie przeprowadzonych badań można stwierdzić, że powłoki natryskane naddźwiękowo wykazały większą odporność na zużycie ścierne. Przyczyną wzrostu zużycia powłok jest zwiększenie udziału Fe₂O₃ w mieszaninie z NiCrBSi, co spowodowało zmniejszenie ich spójności. Obecne w powłokach pasma tlenkowe stanowią fazę, która obniża siły kohezji w matrycy, co ułatwia oddzielanie się lamelli lub ich części od niej w czasie współpracy z przeciwpróbką. Powłoki natryskane naddźwiękowo mają większą spójność (mniejszą porowatość, mniejszą ilość pasm tlenkowych) i dlatego powstałe produkty zużycia powodują większe zużycie przeciwpróbki niż w przypadku powłok natryskanych plazmowo, w których stwierdzono obecność cienkich pasm tlenkowych pomiędzy lamelkami i większą porowatość.

Badania odporności na zatarcie

Wyniki badań dla trzech pomiarów dla każdej powłoki są przedstawione w **Tab. 4**.

Udział % obj.	Wartość średnia, N		Odchylenie standardowe, N	
Fe ₂ O ₃ w mieszaninie	Plazma	HVOF	Plazma	HVOF
0	1568,33	1455,00	80,36	43,54
10	1551,67	1431,67	20,82	66,02
20	1638,33	1481,67	20,21	111,50
30	1843,33	1656,67	345,59	275,79
40	2121,67	1868,33	263,64	523,22
50	2138,33	1916,67	340,64	196,04

Tabela 4. Wyniki pomiarów odporności powłok kompozytowych na zatarcieTable 4. Results of measurements of sprayed coatings scuffing resistance

Otrzymane wartości maksymalnej siły obciążającej powodującej zatarcie dla powłok natryśniętych plazmowo są w każdym przypadku większe niż dla powłok natryskanych naddźwiękowo. Odporność na zatarcie powłoki natryskanej z mieszaniny zawierającej 50% Fe₂O₃ jest nieznacznie większa niż powłoki, która została natryskana z mieszaniny zawierającej 40% Fe₂O₃. Może to być spowodowane mniejszym stopniem osadzania się samodzielnych płatkowych cząstek Fe₂O₃ w czasie natryskiwania zarówno plazmowego, jak i naddźwiękowego. Odchylenia standardowe dla tych powłok są znacznie większe niż w przypadku powłok o mniejszej zawartości składnika będącego smarem stałym. Przyczyną takiego zjawiska może być niejednorodność struktury powłok otrzymywanych z mieszanin proszków o różnej morfologii i rozkładzie granulometrycznym.

WNIOSKI

1. Przeprowadzona analiza fazowa wykazała, że natryskana plazmowo powłoka NiCrBSi ma inny skład fazowy niż powłoka natryskana naddźwiękowo.

- 2. Natryskane naddźwiękowo powłoki NiCrBSi, NiCrBSi/Fe₂O₃ oraz Fe₂O₃ mają niższa porowatość niż powłoki natryskane plazmowo.
- 3. Powłoki natryskane naddźwiękowo wykazały większą odporność na zużycie niż powłoki natryskane plazmowo.
- 4. Natryskane plazmowo powłoki NiCrBSi mają wyższą odporność na zatarcie niż powłoki natryskane naddźwiękowo.

LITERATURA

- 1. Żórawski W.: HVOF spraying as an alternative to chromium plating. International Conference "Modern Wear and Corrosion Resistant Coatings Obtained by Thermal Spraying" Warszawa 2003.
- Maiti A., Mukhopadhyay N., Raman R.: Effect of adding WC powder to the feedstock of WC-Co-Cr based HVOF coating and its impact on erosion and abrasion resistance. Surface and Coating Technology 201(2007), 7781–7788.
- 3. Qiao, Yunfei; Fischer, Traugott E.; Dent A.: The effects of fuel chemistry and feedstock powder structure on the mechanical and tribological properties of HVOF thermal-sprayed WC–Co coatings with very fine structures. Surface and Coatings Technology Volume: 172, Issue: 1, July 15, 2003, pp. 24–41.
- Huang Ch., Du L., Zhang W.: Effects of solid lubricant content on the microstructure and properties of NiCr/Cr3C2–BaF2·CaF2 composite coatings.Journal of Alloys and Compounds Volume: 479, Issue: 1–2, June 24, 2009, pp. 777–784.
- 5. Cherigui M., Fenineche N.E., Coddet C.: Structural study of iron-based microstructured and nanostructured powders sprayed by HVOF thermal spraying. Surface and Coatings Technology, Vol. 192, Issue: 1, March 1, 2005, pp. 19–26.
- Heshmat H., Hryniewicz P., Walton II J.F., Willis J.P., Jahanmir S., Della-Corte C.: Low-friction wear-resistant coatings for high-temperature foil bearings. Tribology International Volume: 38, Issue: 11–12, November, 2005–December, 2006, pp. 1059–1075.

Recenzent: Michał STYP-REKOWSKI

Summary

Nowadays plasma spraying and supersonic spraying processes are widely applied in many branches of industry. This paper presents current achievements in this area and the results of investigations of plasma and supersonic sprayed NiCrBSi/Fe₂O₃ coatings. It was found that the microstructures of coatings depend on the method of spraying. The tests show that supersonic coating possesses lower porosity and scuffing resistance. The investigations concluded that supersonic sprayed coatings posses higher wear resistance. The increase of the Fe₂O₃ portion in the composite coating causes a decrease of the wear resistance of coatings.