Identyfikatory
Warianty tytułu
Tribological characteristics of the surface layer with boron under sliding friction onditions
Języki publikacji
Abstrakty
Właściwości tribologiczne par ciernych zależą od ich konstrukcji, zastosowanych materiałów i przeprowadzonej obróbki powierzchniowej elementów pary. Celem badań było wyznaczenie wpływu modyfikacji warstwy powierzchniowej elementów stalowych borem w parach pracujących w warunkach tarcia ślizgowego. Badania porównawcze przeprowadzono na testerze T-05 typu rolka–klocek. W celu realizacji programu badań wykonano próbki pierścieniowe z trzech gatunków stali: 38CrAlMo5-10, 46Cr2 i 30MnB4. Próbki te azotowano jonowo, borowano w proszku, borowano laserowo oraz metodą PVD wykonano powłokę TiB2. Próbki pierścieniowe skojarzone zostały w warunkach testu z przeciwpróbkami wykonanymi ze stopu łożyskowego AlSn20, a obszar tarcia smarowano olejem silnikowym Lotos mineralny 15W/40. Przeprowadzone badania wykazały, że warstwy powierzchniowe borowane w proszku wpływają na obniżenie współczynnika tarcia podczas rozruchu, a jego maksymalne wartości są zbliżone do zmierzonych w skojarzeniach z warstwami azotowanymi i ulepszanymi cieplnie ze stali 30MnB4. Największe wartości współczynnika tarcia i najwyższe temperatury w obszarze tarcia występują w parach z próbkami pierścieniowymi z warstwą borowaną laserowo i z powłoką TiB2. Zużycie stopu łożyskowego AlSn20 jest największe w skojarzeniu z przeciwpróbką z powłoką TiB2, a najniższe zużycie zmierzono w skojarzeniach z warstwami azotowanymi i ulepszanymi cieplnie.
The properties of the frictional slide couplings depend on the constructional material used and technology applied during the production process. The tribological properties of the frictional coupling are the resultant of the coupling construction and properties of the cooperating surfaces. The surface layer may be shaped by technological processes through the correct material selection used for these elements and technology applied for the surface treatment. Currently, numerous methods are used in producing the surface layers, which protect against tribological wear; however, particularly advantageous properties feature those coatings with boron. These coatings feature a high degree of the hardness of the structures, resistance to wear and corrosion, and good fatigue properties, depending on the technological preparation of the base. The purpose of the study to determine the influence of the boron modification of the technological surface layer on the characterisation of the operation of frictional pairs under the conditions of mixed friction, and in practical application, increasing of the durability and reliability of frictional pairs and, in consequence, whole technical objects, such as automobiles. In order to create surface layers modified with boron, technological processes were selected that allowed for the creation of these layers on the elements of a combustion engine. These processes were used for the treatment of the surface layer of annular samples for stand test on the T-05 block-on-ring wear tester. Three types of steel were used in the creation of annular samples, 38CrAlMo5-10, 46Cr2, and 30MnB4. Samples from 38CrAlMo5-10 steel were nitrided in the atmosphere H2 + N2, at the temperature of 500°C for 6 hours. Samples from 46Cr2 steel were borided in powder, at the temperature of 950°C for 8 hours. In the boronizing process, powder of the following composition was used: B4C-30%, Al2O3-68%, NH4Cl and NaF. Samples from 46Cr2 steel were also laser-borided, with the use of CO2 laser (power of beam P = 2 kW, spot diameter d = 4 mm, energy density 160 W/mm2, tracking speed v = 16 mm/s, gas carrier –argon). The boronizing process consisted in covering the annular sample with the layer of amorphous boron and liquid glass and melting with a laser beam. Also, the samples from steel 46Cr2 were covered with a TiB2 coating, using the PVD method (temperature 400°C, time 40 min, pressure in ionization chamber p = 2,5 x 10-2 bara). The sample of 30MnB4 steel was hardened and tempered, and hardening was at the temperature of 800°C, and drawing temper was at the temperature of 450°C. Modified surface layers of annular samples were matched under test conditions with counter samples made from AlSn20 bearing alloys. Tested slide pairs were lubricated during the stand test with 15W/40 Lotos mineral engine oil. On the basis of the tests and the analysis of the results, it was concluded that the boron-modified surface layers can be applicable in the slide couplings operating under mixed friction conditions, and their tribological properties are the effect of the interaction between the surface layers of the slide coupling elements and the lubricating oil. The modified surface layer in the process of boronizing in powder coupled with the AlSn20 bearing alloy is characterised by low friction resistance and temperature, which ensures that the slide coupling has conducive conditions for start-up and fast stabilisation of the friction conditions. In turn, the laser borided surface layer and layer TiB2 causes intensive friction processes in the slide coupling, which generates high friction resistance and temperature and intensifies the processes of bearing alloy wear. It was stated that the use of 30MnB4 steel in the slide coupling after the hardening and tempering ensures similar work parameters and a comparable level of wear of the bearing alloy, as in the application of 38CrAlMo5-10 steel with a nitrided surface. The research proved that the lubrication of the friction area with the mineral oil has an influence on the decrease of wear of the bearing alloy and the decrease of the matching parameters of the moment of friction and temperature, mainly in the couplings with the AlSn20 alloy counter samples. Using the boron-modification processes of surface layers in slide couplings operating under the conditions of mixed friction, it is possible to decrease the costs of material using mild-alloy steel or carbon steel and to decrease the costs of exploitation by increasing the durability of elements. However, each time surface layers with boron are used on a large scale, it should be preceded by economic calculation.
Czasopismo
Rocznik
Tom
Strony
97--112
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
- Uniwersytet Rzeszowski, Instytut Techniki, Al. Rejtana 16A, 35-959 Rzeszów, janas@univ.rzeszow.pl
Bibliografia
- 1. Bejar M.A., Moreno E.: Abrasive wear resistance of boronized carbon and low-alloy stell. Journal of Materials Processing Technology, vol. 173, 2006, s. 352-358.
- 2. Martini C., Palombarini G., Poli G., Prandstraller D.: Sliding and abrasive wear behaviour of boride coatings. Wear, vol. 256, 2004, s. 608-613.
- 3. Przybyłowicz K.: Teoria i praktyka borowania stali. Politechnika Świętokrzyska, Kielce 2000.
- 4. Atik E., Yunker U., Meric C.: The effect of conventional heat treatment and boronizing on abrasive wear and corrosion of SAE 1010, SAE 1040, D2 and 304 steels. Tribology International, 36 (2003) 155-161.
- 5. Meric C., Sahina S., Yilmazb S.S.: Investigation of the effect on boride layer of powder particle size used in boronizing with solid boron-yielding substances. Materials Research Bulletin, vol. 35, 2000, s. 2165-2172.
- 6. Sen U., Sen S., Yilmaz F.: Structural characterizations of boride layer on boronized ductile irons. Surface Coating technology, 176 (2000) 223-228.
- 7. Panish N., Wangyao P., Hannongbua S., Sricharoenchai P., Sun Y.: Tribological study of nano-multilayer ultra-hard coatings based on TiB2. Rev. Adv. Mater Sci, vol. 13, 2006, s. 117-124.
- 8. Basu B., Vleugels J., Van Der Biest O.: Fretting wear behavior of TiB2-based materials against bearing steel under water and oil lubrication. Wear, vol. 250, 2001, s. 631-641.
- 9. Kulka M., Pertek A.: The importance of carbon content beneath iron borides after boriding of chromium and nickel-based low carbon steel. Applied Surface Science, vol. 214, 2003, s. 161-171.
- 10. Sen U., Sen S., Yilmaz F.: The fracture toughness of borides formed on boronized cold work tool steel. Material Characterization, vol. 50, 2003, 261-267.
- 11. Ozimina D.: Przeciwzużyciowe warstwy wierzchnie w układach tribologicznych. Politechnika Świętokrzyska, Kielce 2002.
- 12. Szczerek M., Wiśniewski M.: Tribologia i tribotechnika. ITeE, Radom 2000.
- 13. Schouwenaars R., Jacobo V.H., Ortiz A.: Microstructure aspect of wear in soft tribological alloys. Wear, vol. 263, 2007, s. 727-735.
- 14. Pranay A., Liang H., Usta M., Ucisik A.H.: Wear and surface charakterization of boronized pure iron. Journal of Tribology, vol. 129, 2007, s. 1-10.
- 15. Berger M., Hogmark S.: Evaluation of TiB2 coatings in sliding contact against aluminium. Surface and Coating Technology, vol. 149, 2002, s. 14-20.
- 16. Guha D., Chowdhuri R.: The effect of surface roughness on the temperature at the contact between sliding bodies. Wear, vol. 197, 1996, s. 63-73
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS1-0034-0033