PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ czynników eksploatacyjnych na zużycie erozyjne powłok epoksydowych

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Influence of environment factors on the resistant to erosive wear of the epoxy coatings
Języki publikacji
PL
Abstrakty
PL
W artykule zawarto ocenę (na podstawie badań modelowych) wpływu czynników eksploatacyjnych w postaci promieniowania ultrafioletowego, jak również mediów agresywnych (wodnych 20% roztworów kwasu siarkowego, wodorotlenku potasu lub chlorku sodu) na: pękanie, pęcherzenie, porowatość, a także chropowatość powierzchni powłok epoksydowych. Ustalono, że zużycie warstw powierzchniowych powłok epoksydowych pod wpływem starzenia, a także zwiększenie ich porowatości są przyczyną znacznego obniżenia odporności erozyjnej powłok.
EN
The paper presents (on the basis of the model research) an influence evaluation of environmental hazards like ultraviolet radiation and aggressive media (20% water solutions of sulphuric acid, natrium chloride and potassium hydroxide) on the destruction (cracking, blistering, porosity, roughness increase) of epoxy coatings. Under the action of sodium chloride, sulphuric acid or potassium hydroxide aqueous solutions as well as ultraviolet radiation, epoxy coatings underwent both chemical and physical (cracking, blistering, increased porosity and surface roughness) destruction. It results from rentgenographic investigations that epoxy coatings undergo oxidation under the action of these media. The highest oxidation level showed coatings aged with ultraviolet radiation. The action of aggressive media caused the cracking of epoxy coating surface layers. Sulphuric acid action caused additionally significant coating blistering. In the case of ageing with ultraviolet radiation, so-called "silver" cracks (typical for this ageing kind) were generated on the coating surface. Oxidised coating layers showed increased brittleness that caused the deterioration of the bonding strength of pigments and fillers with polymer matrix. In the next stage, pigments and fillers were crumbled up from surface layers. This resulted in a significant increase of surface roughness of the aged coatings. For instance, the value of the surface roughness parameter Ra increased over 25 times for a coating aged with ultraviolet radiation for 1008 hours. Polymeric coating destruction under the action of environmental factors - as a result of their cracking, blistering and surface roughness increase - decreases the coating tightness. Surface roughness increase causes a decrease of coating gloss that deteriorates coating decorative properties. Loss of coating tightness and decorative properties decreases the service life of coating. Wear resulting from ageing of epoxy coating surface layers as well as from coating porosity increase is the reason of essential decrease of their resistance to erosive wear. Destruction of coatings under the influence of ultraviolet radiation leads to the greatest decrease of coatings resistance to erosive wear reaching amount of 57% for 1320 h of ageing. The decrease of resistance to erosive wear for other types of coating was from 34% for ageing with 20% aqueous solution of potassium hydroxide to 51% for ageing with 20% aqueous solution of sodium chloride.
Czasopismo
Rocznik
Tom
Strony
321--332
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Politechnika Radomska, Wydział Mechaniczny, Instytut Eksploatacji Pojazdów i Maszyn, ul. Bolesława Chrobrego 45, 26-600 Radom
Bibliografia
  • [1] Kotnarowska D.: Kinetics of wear of epoxide coating modified with glass microspheres and exposed to the impact of alundum particles. Progress in Organic Coatings, Vol. 31 (1997), p. 325-330.
  • [2] Kotnarowska D.: Influence of ageing on mechanical properties of epoxy coatings. Materiały konferencyjne (czasopismo internetowe). Advances in Corrosion Protection by Organic Coatings. Cambridge 1999, p. 1-10.
  • [3] Kotnarowska D.: Wpływ czynników otoczenia na własności eksploatacyjne ochronnych powłok epoksydowych urządzeń technicznych. Monografia Nr 40, Wydawnictwo Politechniki Radomskiej, Radom 1999, 232.
  • [4] Kotnarowska D.: Influence of ultraviolet radiation and aggressive media on epoxy coating degradation. Progress in Organic Coatings 1999, Vol. 37, p.149-159.
  • [5] Kotnarowska D., Wojtyniak M.: Effect of water solutions of potassium hydroxide, sodium chloride and sulphuric acid on adhesion to the steel substrate of acrylic-epoxy coatings. Physico-Chemical Mechanics of Materials, Special Issue No. 1. Lwów 2000, p. 298-303.
  • [6] Kotnarowska D.: Rodzaje procesów zużywania powłok polimerowych. Monografia Nr 60, Wydawnictwo Politechniki Radomskiej, Radom 2003, 212.
  • [7] Kotnarowska D.: Influence of Ultraviolet Radiation on Erosive Resistance of Modified Epoxy Coatings. Solid State Phenomena 2006, Vol. 113 (Mechatronic Systems and Materials), p. 585-588.
  • [8] Kotnarowska D.: Examination of dynamics of polymeric coatings erosive wear process. Materials Science 2006, Vol. 12, nr 2, p. 138-143.
  • [9] Kotnarowska D.: Powłoki ochronne. Wydawnictwo Politechniki Radomskiej, Radom 2007, 320.
  • [10] Kotnarowska D., Klasek T.: Wpływ starzenia na porowatość powłok epoksydowych. Inżynieria Powierzchni 2007' Nr 4, s. 15-21.G2
  • [11] Kotnarowska D.: Nanotechnology application to polymeric coating production. Materials of conference: Viennano'07, Vienna 2007, Austria, p. 63.
  • [12] Narisawa I.: Resistance of Polymer Materials. Ed. Chemistry, Moscow 1987 (in Russian).
  • [13] Nguyen T., Hubbard J.B., Pommersheim J.M.: Unified model for the degradation of organic coatings on steel in a neutral electrolyte. Journal of Coatings Technology 1996, Vol. 68, No. 855, p. 45-56.
  • [14] Nguyen T., Bentz D., Byrd E.: A study of water at the organic coating/substrate interface. Journal of Coatings Technology 1994, Vol. 66, No. 834, p. 39-50.
  • [15] Nguyen T., Bentz D., Byrd E.: Method for measuring water diffusion in a coating applied to a substrate. Journal of Coatings Technology 1995, Vol. 67, No. 844, p. 37-46.
  • [16] Pommerscheim J.M., Nguyen T., Zhang Z., Hubbard J.B.: Degradation of organic coatings on steel; mathematical models and predictions. Progress in Organic Coatings 1994, Vol. 25, p. 23-41.
  • [17] Zahavi J., Schmitt G.F.: Solid particle erosion of reinforced composite materials. Wear 1981, Vol. 71, p. 179-190.
  • [18] Zahavi J., Schmitt G.F.: Solid particle erosion of rein coatings. Wear 1981, Vol. 71, p. 191-210.
  • [19] Zhang J., Richardson M.O.W., Wilcox G.D., Min J., Wang X.: Assessment of resistance of non-metallic-coatings to silt abrasion and cavitation erosion in a rotating disk test rig. Wear 1996, Vol. 194, p. 149-155.
  • [20] Zheng Y., Yao Z., Wei X., Ke W.: The synergistic effect between erosion and corrosion in acidic slurry medium. Wear 1995, Vol. 186/187, p. 555-561.
  • [21] Zhou S., Wu L., Sun J., Shen W.: The change of the properties of acrylicbased polyurethane via addition of nano-silica. Progress in Organic Coatings 2002, Vol. 45, p. 33-42.
  • [22] Зубов П.И., Сухарева Л.А.: Структура и свойства полимерных покрытий. Химия, Москва 1982, 256 с.
  • [23] Зубов П.И., Сухарева Л.А.: Явление тиксотропного снижения внутренных напряжений в полимерных покрытиях. Лакокрасочные материалы и их применение 1980, Н. 4, с. Зн-6.
  • [24] Зуев Ю.С.: Разрушение полимеров под действием агрессивных сред. Химия, Москва 1972, с. 232.
  • [25] Zyska B.: Problemy mikrobiologicznego rozkładu i mikrobiologicznej korozji materiałów. Ochrona przed Korozją 1994, nr 4, s. 82-86.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS1-0031-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.