PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Techniki wytwarzania nanowłókien. Część 3b. Elektroprzędzenie nanowłókien ze stopionych polimerów oraz ze związków nieorganicznych

Autorzy
Identyfikatory
Warianty tytułu
EN
Electrospinning of nanofibres by means of fused polimers and inorganic compounds
Języki publikacji
PL
Abstrakty
Rocznik
Tom
Strony
37--40
Opis fizyczny
Bibliogr. 69 poz., rys.
Twórcy
  • Instytut Włókiennictwa w Łodzi
Bibliografia
  • 1. Larrondo, Manley R., St J., Electrostatic fiber spinning from polymer melts, I. Experimental observations on fiber formation and properties. J. Polymer Science Part B: Polymer Physics, vol. 19, 909-20, (1981).
  • 2. Larrondo, Manley R., St J., Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet, J. Polymer Science Part B: Polymer Physics, vol. 19, 921-932, (1981).
  • 3. Larrondo, Manley R., St J., Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt, J. Polymer Science Part B: Polymer Physics, vol. 19, 933-940 (1981).
  • 4. Kim J-S., Lee D-S., Thermal properties of electrospun polyestes, Polymer Journal, vol. 32 (7), 616-618, (2000).
  • 5. Rangkupan R., Reneker D.H., Development of electrospinning from moltenpolymers in vacuum, Book of Abstracts. Fiber Society Spring Meeting, May 21-23, 2001, http://www.tx.ncsu.edu/jtatm/volume1specialissue.
  • 6. Couillard R. A. A., Chen Z., Schwartz P., Spinning fine fibers from solutions and the melt using electrostatic fields, Book of Abstracts. Fiber Society Spring Meeting, May 21-23,2001, http://www.tx.ncsu edu/jtatm/volume1specialissue.
  • 7. Dalton P. D., Klinkhammer K., Salber J., Klee D., Möller M., Direct in vitro electrospinning with polymer melts, Biomacromolecules, vol.7 (3), 686-90, (2006).
  • 8. Lyons J., Ko F., Melt electrospinning part I: processing parametes and geometric properties, Polymer vol. 457597-7603, (2004).
  • 9. Warner S., Fowler A., Jaffe M., Ugbolue S., Cost effective nanofiber formation: melt electrospinning, NTC Annual Report 2006 Project: F05-MD01, (www.ntcresearch.org).
  • 10. Ogata N., Yamaguchi S., Shimada N., Lu G., Iwata T., Nakane K., Ogihara T., Poly(lactide) nanofibers produced by a melt-electrospinning system with a laser melting device, J. of Applied Polymer Science, vol. 104, 1640-1645, (2007).
  • 11. Sawicka K. M., Gouma P., Electrospun composite nanofibers for functional applications", Journal of Nanoparticle Research, vol. 8, 769-781, (2006).
  • 12. Drew C., Liu X., Ziegler D., Wang X., Bruno F. F., Whitten J., Samuelson L. A., Kumar J., Metal Oxide-Coated Polymer Nanofibers, Nano Letters, vol. 3 (2), 143-147, (2003).
  • 13. Ko F., Gogotsi Y., Ali A., Naguib N., Ye H., Yang G. L., Li C., Willis P., Electrospinning of continuous carbon nanotube-filled nanofiber yarns, Adv. Mater., vol. 15 (14), 1161-1165, (2003).
  • 14. SreekumarT. V., Liu T., Min B. G., Guo H., Kumar S., Hauge R. H., Smalley R. E., Polyacrylonitrile single-walled carbon nanotube composite fibers, Adv, Mater., vol. 16, (1), 58-61, (2004).
  • 15. Dror Y., Salalha W., Khalfin R. L., Cohen Y., Yarin A. L., Zussman E., Carbon nanotubes embeddedin oriented polymer nanofibers by electrospinning, Langmuir, vol. 19 (17), 7012-7020, (2003).
  • 16. Ge J. J., Hou H., Li Q., Graham M. J., Greiner A., Reneker D. H., Harris F. W., Cheng S. Z. D., Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets, J. Am. Chem. Soc., vol. 126 (48), 15754-15761, (2004).
  • 17. Yarin A. L., Zussman E., Electrospinning of nanofibers from polymer solutions, Proceedings of 21st ICTAM, 15-21.08. 2004, Warszawa.
  • 18. Hou H. Q., Ge J. J., Zeng J., Li Q., Reneker D. H., Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes, Chem. Mater, vol. 17 (5), 967-73, (2005).
  • 19. Kedem S., Schmidt J., Paz Y., Cohen Y, Composite polymer nanofibers with carbon nanotubes and titanium dioxide particles, Langmuir, vol. 21 (12), 5600-5604, (2005).
  • 20. Yeo L. Y., Friend J. R., Electrospinning carbon nanotube polymer composite nanofibers, Journal of Experimental Nanoscience, vol. 1 (2), 177-209, (2006).
  • 21. Wang M., Singh H., Hatton T. A., Rutledge G. C, Field-responsive superparamagnetic composite nanofibers by electrospinning, Polymer, vol. 45 (16), 5505-5514,( 2004).
  • 22. Son W. K., Youk J. H., Lee T. S., Park W. H., Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles, Macromolecular Rapid Communications, vol. 25(1), 1632-1637, (2004).
  • 23. Fujihara K., Kotaki M., Ramakrishna S., Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers, Biomaterials, vol. 26 (10), 4139-4147, (2005).
  • 24. Zhang Y., Ouyang H., Lim Ch. T., Ramakrishna S., Zheng-Ming Huang Z.M., Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds, J Biomed. Mater. Res Part B: Appl Biomater, vol. 72B, 156-165, (2005).
  • 25. Taepaiboon P., Rungsardthong U., Supaphol P., Drug-loaded electrospun mats of poly (vinyl alcohol) fibres and their release characteristics of four model drugs, Nanotechnology, vol. 17, 2317-2329, (2006).
  • 26. Tungprapa S., Jangchud I., Supaphol P., Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats, Polymer, vol. 48, 5030-3041, (2007).
  • 27. Casper C. L., Yamaguchi N., Kiick K. L., Rabolt J. F., Functionalizing electrospun fibers with biologically relevanl macromolecules, Biomacromolecules, vol. 6 (4),1998-2007, (2005).
  • 28. Luong-Van E., Grondahl L., Chua K. N., Leong K. W., Nurcombe V., Cool S. M., Controlled release of heparin from poły (? -caprolactone) electrospun fibers, Biomaterials, vol. 27 (9), 2042-2050, (2006).
  • 29. Katti D. S., Robinson K. W., Ko F. K., Laurencin C. T., Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters, J. Biomed. Mater. Res. Part B: Appl. Biomater. 70B: 286-296, (2004).
  • 30. Chun I., Reneker D. H., Fong H., Fang X. Y., Dietzel J., Tan N. B., Kearns K., Carbon nanofibers from polyacrylonilrile and mesophase pitch, J. Adv. Mater. vol. 31, 36-41, (1999).
  • 31. Norris I. D., Shaker M. M., Ko F. K., MacDiarmid A. G., Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends, Synthetic Metals, vol. 114 (2), 109-114, (2000).
  • 32. MacDiarmid A. G., Jones W. E., Norris I. D., Gao J., Johnson A. T., et al., Electrostatically-generated nanofibers of electronic polymers, Synth. Met. vol. 119, 27-30, (2001).
  • 33. Wang Y., Serrano S., Santiago-Aviles J. S., Raman characterization of carbon nanofibers prepared using electrospinning", Synthetic Metals, vol. 138 (3), 423-427, (2003).
  • 34. Agend F., Nader N., Fareghi-Alamdari R., Fabrication and electrical characterization of electrospun polyacrylonitrile-derived carbon nanofibers, J Appl Polym Sci. vol. 106 (1), 255-259, (2007).
  • 35. Chung G. S., Jo S. M., Kim B. C., Properties of carbon nanofibers prepared from electrospun polyimide, J. Appl. Polym. Sci., vol. 97, 165-170(2005).
  • 36. Greiner A., Wendorff J. H., Yarin A. L., Zussman E., Biohybrid nanosystems with polymer nanofibers and nanotubes, Appl. Microbiol. Biotechnol, vol. 71, 387-393, (2006).
  • 37. Ma Z., He W., Yong T., Ramakrishna S., Grafting of gelatin on electrospun poly (caprolacto-ne) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation, Tissue Engineering, vol. 11 (7/8), 1149-1158, (2005).
  • 38. Ma Z., Kotaki M., Yong T., He W., Ramakrishna S., Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering, Biomaterials, vol. 26 (15), 2527-36,( 2005).
  • 39. He W., Ma Z. W., Yong T., Teo W. F., Ramakrishna S., Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth", Biomaterials, vol. 26 (36), 7606-7615, (2005).
  • 40. Kim T. G., Park T. G., Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh, Tissue Eng., vol. 12(2), 221-233, (2006).
  • 41. Sigmund W., Yuh J., Park Y. H., Maneeratana V., Pyrgiotakis G., Daga A., Taylor J., Nino J. C., Processing and structure relationships in electrospinning of ceramic fiber systems, J. Am. Ceram. Soc, vol. 89 (3), 395-407, (2006).
  • 42. Li D., McCann J. T., Xia Y., Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes, J. Am. Ceram. Soc, vol. 89 (6), 1861-1869, (2006).
  • 43. Larsen G., Velarde-Ortiz R., Minchow K., Antonio Barrero A., Loscertales A. G., A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets, J. Am. Chem. Soc, vol. 125 (5), 1154-1155, (2003).
  • 44. Li D., Xia Y., Fabrication of Titania Nanofibers by Electrospinning, Nano Letters, vol. 3 (4), 555-5560, (2003).
  • 45. Choi S.-S., Lee S. G., Im S. S., Kim S. H., Joo Y. L., Silica nanofibers from electrospinning/sol-gel process, Journal of Materials Science Letters, vol. 22, no. 12, 891-893, (2003).
  • 46. Guan H., Shao Ch., Wen S., Chen B., Gong J., Yang X., Preparation and characterization of NiO nanofibers via an electrospinning technique, Inorganic Chemistry Communications, vol. 6, 1302-1303, (2003).
  • 47. Guan H., Shao Ch., Chen B., Gong J., Yang X., A novel method for making CuO superfine fibres via an electrospinning technique, Inorganic Chemistry Communications, vol. 6, 1409-1411, (2003).
  • 48. Yang X., Shao Ch., Guan H., Li X., Gong J., Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor, Inorganic Chemistry Communications, vol. 7(2), 176-178, (2004).
  • 49. Kanehata M., Ding B., Shiratori S., Nanoporous ultra-higli specific surface inorganic fibres, Nanotechnology 18 (2007).
  • 50. Kim H. V., Viswanathamurthi P., Bhattarai N., Lee D. R., Vanadium oxide nanofibres by electrospinning, Rev. Adv. Mater. Sci. vol. 5, 216-219, (2003).
  • 51. Zhang H. B., Edirisinghew M. J., Electrospinning zirconia fiber from a suspension, J. Am. Ceram. Soc., 89 (6) 1870-1875 (2006).
  • 52. McCann J. T.; Li D. and Xia Y., Electrospinning of Nanofibers with Core-Sheath, Hollow, or Porous Structures, Journal of Materials Chemistry. vol. 15 (7), 735-738, (2005).
  • 53. Li D., McCann J. T., Xia Y., Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces, Small, vol. 1,(1), 83-86, (2005).
  • 54. Loscertales I. G., Barrero A., Marquez M., Spretz R., Velarde-Ortiz R., Larsen G., Electrically forced coaxial nanojets for one-step hollow nanofiber design, J. Am. Chem. Soc, vol. 126 (17), 5376-5377, (2004).
  • 55. Panels J. E., Joo Y. L., Incorporation of vanadium oxide in silica nanofibers mats via electrospinning and sol-gel synthesis, Journal of Nanomaterials, vol. 2006, 1-10 (2006).
  • 56. Sun Z., Zussman E., Yarin A. L., Wendorff J. H., Greiner A., Compound core-shell polymer nanofibers by co-electrospinning, Adv. Mater., vol. 15, 1929-1932, (2003).
  • 57. Yu J. H., Fridrikh S. V., Rutledge G. C., Production of submicrometer diameter fibers by two-fluid electrospinning, Advanced Materials, vol. 16 (17), 1562-1566, (2004).
  • 58. Gupta B., King M., Hudson S., Loboa E., Electrospun core-sheath fibers for soft-tissue engineering, NTC Annual Report 2007, F05-NS04 www.ntcresearch.org.
  • 59. Yarin A. L., Zussman E., Wendorff J. H., Greiner A., Material encapsulation and transport in core-shell micro/nanofibers, polymer and carbon nanotubes and micro/nanochannels, J. Mater. Chem., vol. 17, 2585-2589, (2007).
  • 60. Han X. J., Huang Z., He Ch., Preparation and Characterization of Core-Shell Structured Nanofibers by Coaxial Electrospinning, High Performance Polymers, vol. 19 (2). 147-159 (2007).
  • 61. Liao I. C., Chew S. Y., Leong K. W., Aligned core-shell nanofibers delivering bioactive proteins, Nanomedicine, vol. 1 (4), 465-471 (2006).
  • 62. Zhang Y. Z., Wang X., Feng Y., Li J., Lim C. T., Ramakrishna S., Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum Albumin)-Encapsulated Poly (-caprolactone) Nanofibers for Sustained Release, Biomacromolecules, vol. 7 (4), 1049-1057, (2006).
  • 63. Jiang H., Hu Y., Li Y., Zhao P., Zhu K., Chen W., A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactve agents, Journal of Controlled Release, vol. 108 (2/3), 237-243, (2005).
  • 64. Chew S. Y., Wen J., Yim E. K. F., Leong K. W., Sustained Release of Proteins from Electro-spun Biodegradable Fibers, Biomacromolecules, vol. 6 (4), 2017-2024, (2005).
  • 65. Dror Y., Salalha W., Avrahami R., Zussman E., Yarin A. L., Dersch R., Greiner A., Wendorff J. H., One-step production of polymeric microtubes by co-electrospinning, Small, vol. 3 (6), 1064-1073, (2007).
  • 66. Song T., Zhang Y., Zhou T., Lim C. T., Ramakrishna S., Liu B., Encapsulation of self-assembled FePt magnetic nanoparticles in PCL nanofibers by coaxial electrospinning, Chem. Phys. Lett., vol. 415, (4-6), 317-322, (2005).
  • 67. Huang Z-M., He Ch. L., Yang A., Zhang Y., Han X. Y., Yin J., Wu Q., Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning, J. Biomedical Materials Research Part A, vol. 77A (1), 169-179, (2006).
  • 68. Li D., Babel A., Jenekhe S. A., Xia Y., Nanofibers of conjugated polymers by electrospinning with two-capillary spinneret, Advanced Materials, vol. 16 (22) 2062-2066, (2004).
  • 69. McCann J. T.; Marquez M.; Xia Y., Melt coaxial electrospinning: a versatile method for the encapulation of solid materials and fabrication of phase change nanofibers, Nano Lett. vol. 6 (12), 2868-2872, (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS1-0030-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.