PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanonośniki jako nowoczesne transportery w kontrolowanym dostarczaniu leków

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Nanocarriers as modern transport media in drug delivery systems
Języki publikacji
PL
Abstrakty
PL
W systemie kontrolowanego dostarczania leków na poziomie nanocząstek (NP) wykorzystuje się różne ugrupowania, w tym polimery, materiały węglowe oraz nanocząstki magnetyczne. Wymienione związki, występują w postaci prostego nośnika lub stanowią otoczkę typu core - shell, np. na rdzeniu magnetycznym. Taka modyfikacja pozwala na kontrolowany transport w miejsce docelowe, a także obrazowanie zachodzących w tkance procesów desorpcji leku. W niniejszym artykule zostanie przedstawiona synteza nośników leków, funkcjonalizacja ich powierzchni oraz sposoby immobilizacji związków aktywnych na ich powierzchni ze szczególnym uwzględnieniem materiałów magnetycznych.
EN
In drug delivery systems there are many different groups used at the level of nanoparticles (NP), including polymers, carbon materials and magnetic nanoparticles. The above-mentioned compounds occur in the form of a simple carrier or make a complex core - shell system, e.g. on a magnetic core. This modification allows for a controlled drug delivery to a target site as well as imaging the celllevel drug desorption processes. This paper presents the process of synthesising the drug carriers, functionalising their surfaces and the methods for immobilising active substances on their surface with special emphasis given to magnetic materials.
Czasopismo
Rocznik
Strony
868--881
Opis fizyczny
Bibliogr. 129 poz., 1 tabl.
Twórcy
autor
  • Zakład Farmakologii Doświadczalnej, Uniwersytet Medyczny w Białymstoku
Bibliografia
  • 1. Shenoy D.B, Amiji M.M.: Polyfethylene oxide)-modified polyfepsiloncapro-lactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int. J. Pharm. 2005, 293, 1-2, 261-270.
  • 2. Safra T., Muggia E, Jeffers S., Tsao-Wei D.D., Groshen S., Lyass O., Henderson R., Berry G., Gabizon A.: Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of500mg/m2. Ann. Oncol. 2000, 11,8, 1029-1033.
  • 3. Alexis F., Pridgen E., Molnar L.K., Farokhzad O.C.: Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 2008, 5,505-515.
  • 4. Arruebo M., Fernández-Pacheco R., Ibarra M.R., Santamaría J.: Magnetic nanoparticles for drug delivery. Nanotaday 2007, 2, 3, 22-32.
  • 5. Vauthier C., Bouchemal K.: Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009, 26, 5, 1025-1058.
  • 6. Mazzarino L., Travelet C, Ortega-Murillo S., Otsuka I., Pignot-Paintrand I., Lemos-Senna E., Borsali R.: Elaboration of chitosan-coated nanoparticles loaded with curcumin for mucoadhesive applications. J Colloid Interface Sci. 2012, 370, 1,58-66.
  • 7. XuJ., ZhaoJ.H., Liu Y., Feng N.R, Zhang Y.T.: RGD-modified poly(D,L-lactic acid) nanoparticles enhance tumor targeting of oridonin. Int J Nanomedicine. 2012, 7,211-219.
  • 8. Saraogi G.K., Gupta R, Gupta U.D., Jain N.K., Agrawal G.R: Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int J Pharm. 2010, 385, 1-2, 143-149.
  • 9. Krakovicovâ H., Etrych T., Ulbrich K.: HPMA-based polymer conjugates with drug combination. Eur J Pharm Sci. 2009, 37, 3-4, 405-412.
  • 10. Hanwei Z., Wenjin C., Jianzhong B., Shenguo W.: Preparation of poly (lactide-co-glycolide-co-caprolactone) nanoparticles and their degradation behaviour in aqueous solution. Polymer Degradation and Stability 2006, 91,1929-1936.
  • 11. Park J., Fong P.M., Lu J., Russell K.S., Booth C.J., Saltzman W.M., Fahmy T.M.: PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine. 2009, 5, 4, 410-418.
  • 12. des Rieux A., Fievez V, Garinot M., Schneider Y.J., Préat V.: Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. j Control Release. 2006, 116, I, I -27.
  • 13. Kashi T.S., Eskandarion S., Esfandyari-Manesh M., Marashi S.M., Samadi N., Fatemi S.M., Atyabi F., Eshraghi S., Dinarvand R.: Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. Int J Nanomedicine. 2012, 7, 221-234.
  • 14. Quintanar, D., Allémann, E., Doelker, E., Fessi, H.: Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm. Res. 1998, 15, 1056-1062.
  • 15. Quintanar-Guerrero D., Tamayo-Esquivel D., Ganem-Quintanar A., Allémann E., Doelker E.: Adaptation and optimization of the emulsification-diffusion technique to prepare lipidic nanospheres. Eur J Pharm Sci. 2005,26, 2,211-218.
  • 16. RongX., Xie Y., HaoX., Chen T., Wang Y., Liu Y.: Applications of polymeric nanocapsules in field of drug delivery systems. Curr Drug Discov Technol. 2011, 1,8, 173-187.
  • 17. Lertsutthiwong R, Rojsitthisak R, Nimmannit U.: Preparation of turmeric oil-loaded chitosan-alginate biopolymeric nanocapsules. Materials Science and Engineering C. 2009, 29, 3, 856-860.
  • 18. Cohen-Sela E., Teitlboim S., Chorny M., Koroukhov N., Danenberg H.D., Gao J., Golomb G.: Single and double emulsion manufacturing techniques of an amphiphilic drug in PLGA nanoparticles: formulations of mithramycin and bioactivity. J Pharm Sci. 2009, 98, 4, 1452-1462.
  • 19. Prego C., Torres D., Alonso M.J.: Chitosan nanocapsules as carriers for oral peptide delivery: effect of chitosan molecular weight and type of salt on the in vitro behaviour and in vivo effectiveness. J Nanosci Nanotechnol. 2006, 6, 9-10, 2921-2928.
  • 20. Ding F., Lu Z., Zou R., Zhang Y., Guo Q., Li S., Yang J.: Evaluation of a novel paclitaxel-eluting stent with a bioabsorbable polymeric surface coating in the porcine artery injury model. Acta Cardiol. 2011, 66, 6, 765-72.
  • 21. Azzaroni O., Lau K.H.: Layer-by-layer assemblies in nanoporous templates: nano-organized design and applications of soft nanotechnology. Soft Matter. 2011,7, 19, 8709-8724.
  • 22. Siegwart D.J., Oh J.K., Matyjaszewski K.: ATRP in the design of functional materials for biomedical applications. Progress in Polymer Science, 2012, 37, 18-37.
  • 23. Rouzes C., Leonard M., Durand A., Dellacherie E.: Influence of polymeric surfactants on the properties of drugloaded PLA nanospheres, Colloids and Surfaces B: Biointerfaces 2009, 32, 125-135.
  • 24. Khoee S., Yaghoobian M.: An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion. Eur J Med Chem. 2009, 44, 6, 2392-2399.
  • 25. Chen B., Jerger K., Fréchet J.M., Szoka F.C.: The influence of polymer topology on pharmacokinetics: differences between cyclic and linear PEGylated poly(acrylic acid) comb polymers. J. Control. Release, 2009, 140, 203-209.
  • 26. Sękowski S., Miłowska K., Gabryelak T.: Dendrimers in biomedical sciences and nanotechnology. Postępy Hig Med Dosw. (online), 2008, 62, 725-733.
  • 27. Guillaudeu S.J., Fox M.E., Haidar Y.M., Dy E.E., Szoka F.C., Fréchet J.M.: PEGylated dendrimers with core functionality for biological applications. Bio-conjug Chem. 2008, 2,461 -469.
  • 28. Kang C., Yuan X., Li F., Pu P, Yu S., Shen C., Zhang Z, Zhang Y.: Evaluation of folate-PAMAM for the delivery of antisense oligonucleotides to rat C6 glioma cells in vitro and in vivo. J Biomed Mater Res A. 2010, 93, 2, 585-594.
  • 29. Zhu S., Qian L., Hong M., Zhang L., Pei Y., Jiang Y.: RGD-modified PEG-PA-MAM-DOX conjugate: in vitro and in vivo targeting to both tumor neovascular endothelial cells and tumor cells. Adv Mater. 2011, 23, 12, 84-89.
  • 30. Svenson, S. 2006. Dendrimers. Kirk-Othmer Encyclopedia of Chemical Technology.
  • 31. Kaminskas L.M., Porter C.J.: Targeting the lymphatics using dendritic polymers (dendrimers). Adv Drug Deliv Rev. 2011, 63, 10-11, 890-900.
  • 32. Svenson S., Tomalia D.A.: Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev. 2005, 57, 15,2106-2129.
  • 33. D’Emanuele A., Attwood D.: Dendrimer-drug interactions. Adv Drug Deliv Rev, 2005,57,2147-2162.
  • 34. Foldvari M., Bagonluri M.: Carbon nanotubes as functional excipients for nanomedicines: I. Pharmaceutical properties. Nanomedicine. 2008, 4, 3, 173-182.
  • 35. Zhang W., Zhang Z., Zhang Y.: The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett. 2011,6,555.
  • 36. Beg S., Rizwan M., Sheikh A.M., Hasnain M.S., Anwer K., Kohli K.: Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol. 2011, 63, 2, 141 -163.
  • 37. Liao H., Paratala B., Sitharaman B., Wang Y.: Applications of carbon nanotubes in biomedical studies. Methods Mol Biol. 201 1, 726, 223-241.
  • 38. Journet C., Maser W.K., Bernier R, Loiseau A., Lamy de la Chapelle M., Lefrant S., Deniard R, Lee R., Fischer J.E.: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997,388, 756-758.
  • 39. Guo T., Nikolaev R, Rinzler A.G., Tomanek D., Colbert D.T., Saml-ley R.E.: Self-assembly of tubular tullerenes, J. Phys. Chem. 1995, 99, 10694-10697.
  • 40. Y. Murakami Y., Miyauchi Y., Chiashi S., Maruyama S.: Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol. Chem. Phys. Lett. 2003, 37, 53-58.
  • 41. Bhirde A.A., Patel S., Sousa A.A., Patel V, Molinolo A.A., Ji Y., Leapman R.D., Gutkind J.S., Rusling J.F.: Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine (Lond). 2010, 5, 10, 1535-1546.
  • 42. Ilbasmiş-Tamer S., Yilmaz S., Banoğlu E., Değim I.T.: Carbon nanotubes to deliver drug molecules. J Biomed Nanotechnol. 2010, 6, 1, 20-27.
  • 43. Di Crescenzo A., Velluto D., Hubbell J.A., Fontana A.: Biocompatible dispersions of carbon nanotubes: a potential tool for intracellular transport of anticancer drugs. Nanoscale. 2011, 3,3, 925-928.
  • 44. Zhang B., Chen Q., Tang H., Xie Q., Ma M., Tan L., Zhang Y., Yao S.: Characterization of and biomolecule immobilization on the biocompatible multiwalled carbon nanotubes generated by functionalization with polyamidoamine dendrimers. Colloids Surf B Biointerfaces. 2010, 80, I, 18-25.
  • 45. Shin U.S., Yoon I.K., Lee G.S., Jang W.C., Knowles J.C., Kim H.W.: Carbon nanotubes in nanocomposites and hybrids with hydroxyapatite for bone replacements. j Tissue Eng. 2011 ;2011:674287. Epub 2011 May 25.
  • 46. Arsawang U., Saengsawang O., Rungrotmongkol T., Sornmee R, Wittay-anarakul K., Remsungnen T., Hannongbua S.: How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system? J Mol Graph Model. 201 1, 29, 5, 591 -596.
  • 47. Perry J.L., Martin C.R., Stewart J.D.: Drug-delivery strategies by using template-synthesized nanotubes. Chemistry. 201 1, 17, 23, 6296-6302.
  • 48. Dhar S., Liu Z., Thomale J., Dai H., Lippard S.J.: Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc. 2008, 130, 34, 11467-11476.
  • 49. Chen Z., Pierre D., He H., Tan S., Pham-Huy C., Hong H., Huang J.: Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes, Int J Pharm. 2011, 405, I -2, 153-161.
  • 50. Saravanan R, Sreedhar B., Mishra D., Perumal A., Chandrasekaran V: Hierarchical assembly ofSm2Co7/Co magnetic nanoparticles into highly stable and uniform nanospheres. J Nanosci Nanotechnol. 2011, 11,4, 3706-3710.
  • 51. Pershina A.G., Sazonov A.E., Novikov D.V, Knyazev A.S., Izaak T.I., Itin VI., Naiden E.R, Magaeva A.A., Terechova O.G.: Study of DNA interaction with cobalt ferrite nanoparticles., J Nanosci Nanotechnol. 2011, 11,3, 2673-2677.
  • 52. Meng X., Seton H.C., Lu le T., Prior I A, Thanh N.T., Song B.: Magnetic CoPt nanoparticles as MRI contrast agent for transplanted neural stem cells detection. Nanoscale. 2011, 3, 3, 977-984.
  • 53. Kale S.N., Jadhav A.D., Verma S., Koppikar S.J., Kaul-Ghanekar R., Dhole S.D., Ogale S.B.: Characterization of biocompatible NiCo(2)0(4) nanoparticles for applications in hyperthermia and drug delivery, Nanomedicine. 2011 Aug 9. [Epub ahead of print]
  • 54. Sayed F.N., Jayakumar O.D., Sudakar C., Naik R., Tyagi A.K.: Possible weak ferromagnetism in pure and M (Mn, Cu, Co, Fe and Tb) doped NiGa204 nanoparticles. J Nanosci Nanotechnol. 2011, 11,4, 3363-3369.
  • 55. Figuerola A., Di Corato R., Manna L., Pellegrino T.: From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacological Research 2010, 62, 126-143.
  • 56. Grassi-Schultheiss P.P., Heller R, Dobson J.: Analysis of magnetic material in the human heart, spleen and liver. Biometals, 1997, 10, 351-355.
  • 57. Fowler B.A.: Monitoring of human populations for early markers of cadmium toxicity: A review. Toxicology and Applied Pharmacology 2009, 238,294-300.
  • 58. Huang Y.F., Wang Y.F., Yan X.R: Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environ Sci Technol. 2010,44, 20, 7908-7913.
  • 59. Dong H., Huang J., Koepsel R.R., Ye R, Russell A.J., Matyjaszewski K.: Recyclable antibacterial magnetic nanoparticles grafted with quaternized poly-(2-(dimethylamino) ethyl methacrylate) brushes. Biomacromolecules. 2011, 12,4, 1305-1311.
  • 60. Pham T.T.H., Cao C., Sim S.J.: Application of citrate-stabilized gold-coated ferric oxide composite nanoparticles for biological separations. Journal of Magnetism and Magnetic Materials, 2008, 320, 2049-2055.
  • 61. Liu Y., Jia S., Wu Q., Ran J.,Zhang W., Wu S.: Studies of Fe304-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization. Catalysis Communications, 2011, 12, 717-720.
  • 62. Chen F., Shi R., Xue Y, Chen L, Wan Q.F.: Templated synthesis of monodi-sperse mesoporous maghemite/silica microspheres for magnetic separation of genomic DNA. Journal of Magnetism and Magnetic Materials, 2010, 322, 2439-2445.
  • 63. Basly B., Felder-Flesch D., Perriat R, Pourroy G., Bégin-Colin S.: Properties and suspension stability of dendronized iron oxide nanoparticles for MRI applications. Contrast Media Mol Imaging. 201 I, 6, 3, 132-138.
  • 64. Gupta A.K., Curtis A.S.G.: Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci: Mater Med 2004, 15, 493-496.
  • 65. Kumar C.S.S.R., Mohammad F.: Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Del. Rev. 2011, 63, 789-808.
  • 66. Maier-Hauff K., Rothe R., Scholz R., Gneveckow U., Wust R, Thiesen B., Feussner A., von Deimling A., Waldoefner N., Felix R., Jordan A.: Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol. 2007, 81,1, 53-60.
  • 67. Massart R.: Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn., 1981, 17, 1247-1248.
  • 68. Liu X., Guan Y., Ma Z., Liu H.: Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization. Langmuir 2004, 20, 10278-10282.
  • 69. Matsunga T., Sato R., Kamiya S., Tanaka T., Takeyama H.: Chemilumine-scence enzyme immunoassay using ProteinA-bacterial magnetite complex. J. Magn. Magn. Mater. 1999, 194, 126-131.
  • 70. Sun S., Zeng H.: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc., 2002, 124,8204-8205.
  • 71. Hyeon T., Lee S.S., Park J., Chung Y., Na H.B.: Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc., 2001, 123, 12798-12801.
  • 72. Qu S., Yang H., Ren D., Kan S., Zou G., Li D., Li M.: Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J. Colloid Inerface Sci. 1999, 215, 190-192.
  • 73. Jun Y., Choi J., Cheon J.: Heterostuctured magnetic nanoparticles: their versatility and high performance capabilities. ChemComm, 2007, 1203-1214.
  • 74. Hu F.X., Neoh K.G., Kang E.T.: Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials 2006, 27, 5725-5733.
  • 75. Parvin S., Matsui J., Sato E., Miyashita T.: Side-chain effect on Langmuir and Langmuir-Blodgett film properties of poly(n-alkylmethacrylamide)-coated magnetic nanoparticle. J Colloid Interface Sci 2007, 313, 128-134.
  • 76. McCarthy J.R., Weissleder R.: Multifunctional magnetic nanoparticles for targeted imaging and therapy. Advanced Drug Delivery Reviews 2008, 60, 1241 -1251.
  • 77. Li W., Su B., Meng S.,Ju L., Yan L., Ding Y., Song Y., Zhou W., Li H.,Tang L., Zhao Y., Zhou C.: RGD-targeted paramagnetic liposomes for early detection of tumor: in vitro and in vivo studies. Eur J Radiol. 201 1, 80, 2, 598&06.
  • 78. Creixell M., Herrera A.R, Ayala V, Latorre-Esteves M., Perez-Torres M., Torres-Lugo M., Rinaldi C.: Preparation of epidermal growth factor (EGF) conjugated iron oxide nanoparticles and the irinternalization in to colon cancer cells. Journal of Magnetism and Magnetic Materials 2010, 322, 2244-2250.
  • 79. Jain T.K., Richey J., Strand M., Leslie-Pelecky D.L., Flask C.A., Labhasetwar V.: Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials. 2008, 29, 29, 4012G4021.
  • 80. Shubayev VI., Pisanie T.R., Jin S.H.: Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 2009, 61, 467-477.
  • 81. De Cuyper M., Joniau M.: Mechanistic aspects of the adsorption of phospholipids onto lauric acid stabilized magnetite nanocolloids. Langmuir, 1991, 7, 647-652.
  • 82. Ying X.Y., Du Y.Z., Hong L.H., Yuan H., Hu F.Q.: Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: Preparation and characteristics. Journal of Magnetism and Magnetic Materials 2011, 323, 1088-1093.
  • 83. Wilhelm C., Billotey C., Roger J., Pons J.N., Bacri J.C., Gazeau F.: Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating, Biomaterials, 2003, 24, 1001-1011.
  • 84. Huang F.K., Chen W.C., Lai S.F., Liu C.J., Wang C.L., Wang C.H., Chen H.H., Hua T.E., Cheng Y.Y., Wu M.K., Hwu Y., Yang C.S., Margaritondo G.: Enhancement of irradiation effects on cancer cells by cross-linked de-xtran-coated iron oxide (CLIO) nanoparticles. Phys Med Biol. 2010, 55, 2, 469-g482.
  • 85. Lee I.H., Bulte J.W., Schweinhardt R, Douglas T, Trifunovski A., Hofstetter C., Olson L., Spenger C.: In vivo magnetic resonance tracking of olfactory enshe-athing glia grafted into the rat spinal cord. Exp Neurol. 2004, 187, 2, 509-516.
  • 86. Jeong Ho Chang J.H., Kang K.H., Choi J., JeongJ.K.: High efficiency protein separation with organosilane assembled silica coated magnetic nanoparticles. Superlattices and Microstructures 2008, 44, 442-^448.
  • 87. GangJ., Park S.B.,Hyung W.,Choi E.H.,Wen J.,Kim H.S.,Shul Y.G., Haam S., Song S.Y.: Magnetic poly epsilon-caprolactone nanoparticles containing Fe304 and gemcitabine enhance anti-tumor effect in pancreatic cancer xenograft mouse model. J Drug Target. 2007, 15,6, 445-453.
  • 88. Cole A.J., David A.E., Wang J., Galban C.J., Hill H.L., Yang V.C.: Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials. 2011, 32, 8, 2183-2193.
  • 89. Ko H.Y., Choi K.J., Lee C.H., Kim S.: A multimodal nanoparticle-based cancer imaging probe simultaneously targeting nucleolin, integrin αvβ3 and tenascin-C proteins. Biomaterials. 2011, 32, 4, 1130-1138.
  • 90. Nevozhay D., Kańska U., Budzyńska R., Boratyński J.: Current status of research on conjugates and related drug delivery systems in the treatment of cancer and other diseases. Postępy Hig Med Dosw (Online). 2007, 5, 61, 350-360.
  • 91. Derakhshandeh K., Erfan M., Dadashzadeh S.: Encapsulation of 9-nitro-camptothecin, a novel anticancer drug, in biodegradable nanoparticles: factorial design, characterization and release kinetics. Eur J Pharm Biopharm. 2007, 66, 34-41.
  • 92. McCarron RA., Donnelly R.F., Marouf W.: Celecoxib-loaded poly(D,L-lactide-co-glycolide) nanoparticles prepared using a novel and controllable combination of diffusion and emulsification steps as part of the salting-out procedure. J Microencapsul. 2006, 23, 5, 480-498.
  • 93. Cheng L., Jin C., Lv W., Ding Q., Han X.: Developing a highly stable PLGA-mPEG nanoparticle loaded with cisplatin for chemotherapy of ovarian cancer. PLoS One. 2011,6,9, 25433.
  • 94. Sanna V., Roggio A.M., Posadino A.M., Cossu A., Marceddu S., Mariani A., Alzari V, Uzzau S., Pintus G., Sechi M.: Novel docetaxel-loaded nanoparticles based on poly(lactide-co-caprolactone) and poly(lactide-co-glycolide-co-caprolactone) for prostate cancer treatment: formulation, characterization, and cytotoxicity studies. Nanoscale Res Lett. 2011, 6,1, 260.
  • 95. Nicoli S., Santi P., Couvreur P., Couarraze G., Colombo P., Fattal E.: Design of triptorelin loaded nanospheres for transdermal iontophoretic administration. Int Pharm. 2001, 2014, 1-2,31-35
  • 96. Gómez-Gaete C., Tsapis N., Besnard M., Bochot A., Fattal E.: Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm. 2007, 331,2, 153-159.
  • 97. Budhian A., Siegel S.J., Winey K.I.: Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm. 2007, 336, 2, 367-375.
  • 98. Changyong C., Chae S.Y., Jae-Won N.: Thermosensitive poly(Nisopropy-lacrylamide)-b-poly(_-caprolactone) nanoparticles for efficient drug delivery system, Polymer, 2006, 47,4571 - 4580.
  • 99. Duan J., Mansour H.M., Zhang Y., Deng X., Chen Y., Wang J., Pan Y., Zhao J.: Reversion of multidrug resistance by co-encapsulation of doxorubicin and curcumin in chitosan/poly(butyl cyanoacrylate) nanoparticles. Int J Pharm. 2012 Jan 17. [Epub ahead of print]
  • 100. Wang J., Tan H., Yu A., Ling P, Lou H., Zhai G., Wu J.: Preparation of chitosa-n-based nanoparticles for delivery of low molecular weight heparin. J Biomed Nanotechnol. 2011,7,5,696-703.
  • 101. Wiwattanapatapee R., Lomlim L., Saramunee K.: Dendrimers conjugates for colonic delivery of 5-aminosalicylic acid. J Control Release. 2003, 88, I, 1-9.
  • 102. D’Emanuele A., Jevprasesphant R., Penny J., Attwood D.: The use of a den-drimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J Control Release. 2004, 95, 3, 447-453.
  • 103. Cheng Y., Man N., Xu T., Fu R., Wang X., Wang X., Wen L.: Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J Pharm Sci. 2007, 96 ,3, 595-602.
  • 104. Kolhatkar R.B., Swaan P, Ghandehari H.: Potential oral delivery of7-ethy-I-10-hydroxy-camptothecin (SN-38) using poly(amidoamine) dendrimers. Pharm Res. 2008 , 25, 7, 1723-1729.
  • 105. Ke W., Zhao Y., Huang R., Jiang C., Pei Y.: Enhanced oral bioavailability of doxorubicin in a dendrimer drug delivery system. J Pharm Sci. 2008, 97, 6, 2208-2216.
  • 106. Malik N., Evagorou E.G., Duncan R.: Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs. 1999, 10, 8, 767-776.
  • 107. Najlah M., Freeman S., Attwood D., D’Emanuele A.: In vitro evaluation of dendrimer prodrugs for oral drug delivery. Int J Pharm. 2007, 336, I, 183-190.
  • 108. Kurtoglu Y.E., Mishra M.K., Kannan S., Kannan R.M.: Drug release characteristics of PAMAM dendrimer-drug conjugates with different linkers. Int J Pharm. 2010, 384, 1-2, 189-194.
  • 109. Gurdag S., Khandare J., Stapels S., Matherly L.H., Kannan R.M.: Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines. Bioconjug Chem. 2006, 17, 2, 275-283.
  • 110. Bosnjakovic A., Mishra M.K., Ren W., Kurtoglu Y.E., Shi T., Fan D., Kannan R.M.: Poly(amidoamine) dendrimer-erythromycin conjugates for drug delivery to macrophages involved in periprosthetic inflammation. Nanomedicine. 2011,7,3,284-294.
  • 111. Heister E., Neves V, Tilmaciu C., Lipert K., Beltra'n VS., Coley H.M., Silva S..R.P, McFadden J.: Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon, 2009, 4, 7, 2152-2160.
  • 112. Bhirde A.A., Patel V, Gavard J., Zhang G., Sousa A.A., Masedunskas A., Leapman R.D., Weigert R., Gutkind J.S., RuslingJ.F.: Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano. 2009, 3, 2, 307-316.
  • 113. Liu Z., Chen K., Davis C., Sherlock S., Cao Q., Chen X., Dai H.: Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008, 68, 16, 6652-6660.
  • 114. Zhang D., Pan B., Wu M., Wang B., Zhang H., Peng H., Wu D., Ning P: Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions. Environ Pollut. 2011, 159, 10, 2616-2621.
  • 115. Prajapati VK., Awasthi K., Gautam S., Yadav T.R, Rai M., Srivastava O.N., Sundar S.: Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. J Antimicrob Chemother. 2011, 66, 4, 874-879.
  • 116. Giri A., Bhowmick M., Pal S., Bandyopadhyay A.: Polymer hydrogel from carboxymethyl guar gum and carbon nanotube for sustained trans-dermal release of diclofenac sodium. IntJ Biol Macromol. 2011, 49, 5, 885-893.
  • 117. Taghdisi S.M., Lavaee P, Ramezani M., Abnous K.: Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamerwrapped carbon nanotubes, EurJ Pharm Biopharm. 2011, 77, 2, 200-206.
  • 118. Kam N.W., Dai H.: Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc. 2005, 127, 16, 6021-6026.
  • 119. Yang J., Park S.B., Yoon H.G., Huh Y.M., Haam S.: Preparation of poly epsilo-n-caprolactone nanoparticles containing magnetite for magnetic drug carrier. IntJ Pharm. 2006, 324,2, 185-190.
  • 120. Xu H., Cheng L., Wang C., Ma X., Li Y., Liu Z.: Polymer encapsulated upco-nversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials. 2011, 32, 35, 9364-9373.
  • 121. Yang X., Grailer J.J., Rowland I.J.,Javadi A., Hurley SA, Steeber DA, Gong S.: Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging. Biomaterials. 2010, 31, 34, 9065-9073.
  • 122. Taratula O., Garbuzenko O., Savla R., Wang Y.A., He H., Minko T.: Multifunctional nanomedicine platform for cancer specific delivery of siRNA by superparamagnetic iron oxide nanoparticles-dendrimer complexes. Curr Drug Deliv. 2011, 8, 1,59-69.
  • 123. Kohler N., Sun C., Wang J., Zhang M.: Methotrexate-modified superpara-magnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir. 2005, 21, 19, 8858-8864.
  • 124. Kohler N., Sun C., Fichtenholtz A., Gunn J., Fang C., Zhang M.: Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small. 2006, 2, 6, 785-792.
  • 125. Losic D., Yu Y., Aw M.S., Simovic S., Thierry B., Addai-Mensah J.: Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies. Chem Commun (Camb). 2010, 46, 34, 6323-6325.
  • 126. Bajpai AK, Gupta R.: Magnetically mediated release of ciprofloxacin from polyvinyl alcohol based superparamagnetic nanocomposites. J Mater Sci Mater Med. 2011, 22, 2, 357-369.
  • 127. Arias JL, Lopez-Viota M, Delgado AV, Ruiz MA: Iron/ethylcellulose (core/ shell) nanoplatform loaded with 5-fluorouracil for cancer targeting. Colloids Surf B Biointerfaces. 2010, 77, I, I I I -116.
  • 128. Arias J.L., Linares-Molinero F., Gallardo V., Delgado A.V.: Study of carbonyl iron/poly(butylcyanoacrylate) (core/shell) particles as anticancer drug delivery systems Loading and release properties. Eur J Pharm Sci. 2008, 33,3,252-261.
  • 129. Kempe M., Kempe H., Snowball I., Wallen R., Arza C.R., Götberg M., Ols-son T.: The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials. 2010, 31, 36, 9499-9510.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP3-0002-0094
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.