Identyfikatory
Warianty tytułu
Biological methods for obtaining hydrogen
Języki publikacji
Abstrakty
Wodór, ze względu na znaczną wartość ciepła spalania oraz powszechną dostępność, stanowi dogodny nośnik energii. Biologiczne procesy otrzymywania wodoru obejmują: biofotolizę wody, procesy fermentacyjne oraz elektrochemiczne (bioelektroliza wody). Podczas bioprodukcji wodoru wykorzystuje się głównie odnawialne źródła energii, takie jak energia słoneczna oraz substraty organiczne zawarte w ściekach przemysłowych i surowcach odpadowych. Rozwój tych metod może stać się jednym ze sposobów pozyskiwania taniej i czystej energii.
Due to the considerable combustion heat value and common access, hydrogen constitutes a convenient energy carrier. The biological processes for obtaining hydrogen include the following: biophotolysis of water, fermentation and electrochemical processes (bio-electrolysis of water). During the bioproduction of hydrogen mainly renewable energy sources are used such as solar energy and organic substrates contained in industrial waste and waste materials. The development of these methods may become one of the ways of obtaining cheap and pure energy.
Czasopismo
Rocznik
Tom
Strony
827--834
Opis fizyczny
Bibliogr. 38 poz., 4 rys., 2 tabl.
Twórcy
autor
- Zakład Chemii Analitycznej, Instytut Chemii i Elektrochemii Technicznej, Wydział Technologii Chemicznej, Politechnika Poznańska, Poznań
Bibliografia
- 1. Ball M., Wietschel M.: The future of hydrogen - opportunities and challenges. International Journal of Hydrogen Energy 2009, 34, 615.
- 2. Momirlan M., Veziroglu T.N.: The properties of hydrogen as fuel tomorrow in suitainable energy system for a clear planet. International Journal of Hydrogen Energy 2005, 30, 795.
- 3. Midilli A., Ay M., Dincer I., Rosan M.A.: On hydrogen and hydrogen energy strategies I: current status and needs. Renewable and sustainable energy reviews 2005, 9, 255.
- 4. Holladay J.D., Hu J., King D.L., Wang Y.: An overview of hydrogen production technologies. Catalysis Today 2009, 139, 244.
- 5. Turner J., Sverdrup G, Mann M.K., Maness R-C, Kroposki B., Ghirardi M., Evans R.J., Blake D.: Renewable hydrogen production. International Journal of Energy Research 2008, 32, 379.
- 6. Levin D.B., Chahine R.: Challenges for renewable hydrogen production from biomass. International Journal of Hydrogen Energy 2010, 35, 4962.
- 7. Das D., Veziroglu T.N.: Advances in biological hydrogen production processes. International Journal of Hydrogen Energy 2008, 33, 6046.
- 8. Miyake J. Miyake M., Asada Y.: Biotechnological hydrogen production: research for efficient light energy conversion. Journal of Biotechnology 1999, 70, 89.
- 9. Hemschemeier A., Melis A., Happe T.: Analytical approaches to photobiologi-cal hydrogen production in unicellular green algae. Photosynthetics Research 2009, 102, 523.
- 10. Manish S., Banerjee R.: Comparison of biohydrogen production processes. International Journal of Hydrogen Energy 2008, 33, 279.
- 11. Hallenbeck RC., Benemann J.R.: Biological hydrogen production: fundamentals and limiting processes. International Journal of Hydrogen Energy 2002, 27, 1185.
- 12. Gest H., Kamen M.D.: Photoproduction of molecular hydrogen by Rhodospiril-lum rubrum. Science 1949, 109, 558.
- 13. Keskin T., Abo-Hashesh M., Hallenbeck RC.: Photofermentative hydrogen production from wastes. Bioresource Technology 201 1, 102, 8557.
- 14. Vérmeglio A., Joliot R: The photosynthetic apparatus Rhodobacter sphaeroides. Trends in Microbiology 1999, 7, 435.
- 15. Hinnmann B., Nørskov J.K.: Catalysis by enzyme: the biological ammonia synthesis. Topic in Catalysis 2006, 37, 55.
- 16. Koku H., Eroglu I., Gündüz U., Yücel M., Türker L.: Kinetics of biohydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy 2003, 28, 381.
- 17. Waligórska M., Seifert M., Górecki K, Moritz M., Łaniecki M.: Kinetic model of hydrogen generation by Rhodobacter sphaeroides in the presence of NH4+ ions. Journal of Applied Microbiology 2009, 107, 1308.
- 18. Nichols D.G., Ferguson S.J.: Bioenergetyka 2. PWN Warszawa 1995, rozdz. 6, 185.
- 19. Cogdell R.J., Gardimer A.T.: Rings, ellipses and horseshoes: how purple bacteria harvest solar energy. Photosynthetics Research 2004, 81, 207.
- 20. Paddock M.L., Feher G., Okumara M.Y.: Proton transfer pathways and mechanism in bacterial reaction centres. FEBS Letters 2003, 555, 45.
- 21. Eroğlu L, Tabanoğlu A., Gündüz U., Eroğlu E., Yücel M.: Hydrogen production by Rhodobacter spheroides O.U.001 in a flat plate solar bioreactor. International Journal of Hydrogen Energy 2008, 33, 531.
- 22. Seifert K, Waligorska M., Laniecki M.: Hydrogen generation in photobiological process from dairy wastewater. International Journal of Hydrogen Energy 2010, 35, 9624.
- 23. Seifert K, Waligorska M., Laniecki M.: Brewery wastewaters in photobiological hydrogen generation in presence of Rhodobacter spheroides O.U.001. International Journal of Hydrogen Energy 2010, 35, 4085.
- 24. Boran E., Özgür E., van der BurgJ., Yücel M., Gündüz U., Eroglu I.: Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor. Journal of Cleaner Production 2010, 18, 529.
- 25. Sabourin-Provost G., Hallenbeck PC.: High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresource Technology 2009, 100, 3513.
- 26. Kapdan I.K., Kargi F.: Bio-hydrogen production from waste materials. Enzyme and Microbial Technology 2006, 38, 569.
- 27. Akutsu Y, Li Y.-Y., Harada H., Yu H.-Q.: Effects of temperature and substrate concentration on biological hydrogen production from starch. International Journal of Hydrogen Energy 2009, 34, 2558.
- 28. Lay J.-J., Lee Y.-J., Noike T.: Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research 1999, 33, 2579.
- 29. Li D., Chen H.: Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. International Journal of Hydrogen Energy 2007, 32, 1742.
- 30. Chen W.-H., Chen S.-Y., Khanal S.K., Sung S.: Kinetic study of biological hydrogen production by anaerobic fermentation. International Journal of Hydrogen Energy 2006, 31, 2170.
- 31. Jayasinghearachchi H.S., Sarma P.M., Lal B.: Biological hydrogen production by extremely thermophilic novel bacterium Thermoanaerobacter mathranii A3N isolated from oil producing well. International Journal of Hydrogen Energy 2012, in press, doi: 10.1016/j.ijhdene.2011.12.145.
- 32. Chen C.-C., Chuang Y.-S., Lin C.-Y., Lay C.-H., Sen B.: Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. International Journal of Hydrogen Energy 2012, in press, doi: 10.1016/j. ijhdene.2012.01.036.
- 33. Van Ginkel S.W., Logan B.: Increased biological hydrogen production with reduced organic loading. Water Research 2005, 39, 3819.
- 34. Eroğlu E., Eroğlu L, Gündüz U., Türker L.,Yücel M.: Biological hydrogen production from olive mill wastewater with two-stage processes. International Journal of Hydrogen Energy 2006, 31,1527.
- 35. Lee H.-S., Vermaas W.FJ., Rittmann B.E.: Biological hydrogen production: prospects and challenges. Trends in Biotechnology 2010, 28, 262.
- 36. Tartakovsky B., Manuel M.-F., Wang H., Guiot S.R.: High rate membrane-less microbial electrolysis cell for continuous hydrogen production. International Journal of Hydrogen Energy 2009, 34, 672.
- 37. Call D. Logan B.E.: Hydrogen production in single chamber microbial electrolysis cell lacking a membrane. Environmental Science and Technology. 2008, 42, 3401.
- 38. Nagai N., Takeuchi M., Kimura T., Oka T.: Existence of optimum space between electrodes on hydrogen production by water electrolysis. International Journal of Hydrogen Energy 2003, 28, 35.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP3-0002-0090