Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The mean return time of a discrete Markov chain to a point x is the reciprocal of the invariant probability π(x). We revisit this classical theme to investigate certain exit times for stochastic difference equations of autoregressive type. More specifically, we will discuss the asymptotics, as 0, of the first time that the n-dimensional process ...[wzór] (where ξ1, ξ2, . . . is a sequence of i.i.d. random n-vectors) leaves a given neighborhood of the fixed point of the contraction f.
Czasopismo
Rocznik
Tom
Strony
69--74
Opis fizyczny
Bibliogr. 5 poz.
Twórcy
Bibliografia
- [1] Cogburn R., A uniform theory for sums of Markov chain transition probabilities, Ann. Probab., 3(2)(1975), 191-214.
- [2] Kac M., On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc., 53(1947), 1002-1010.
- [3] Klebaner F., Liptser R., Large deviations for past-dependent recursions, Probl. Inf. Transm., 32(1996), 23-34. (Corrected version 2006).
- [4] Meyn S.P., Tweedie R.L., Markov Chains and Stochastic Stability, Springer- Verlag, 1993.
- [5] Ruths B., Exit times for past-dependent systems, Surveys of Applied and Industrial Mathematics (Obozrenie prikladnoy i promyshlennoy matematiki), 15(1)(2008), 25-30.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP3-0002-0082