PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Procedure of reducing website assessment criteria and user preference analyses

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article outlines the issues of website quality assessment, reduction of website assessment criteria and factors that users employ in the assessment of websites. The article presents a selection procedure concerning significant choice criteria and revealing undisclosed user preferences based on news portals and the eQual assessment model. The formulated procedure utilizes statistical metrics, multiple criteria decision making, rough sets and data mining tools. Results concerning undisclosed preferences were verified through a comparison to those declared by website users. The obtained results were further verified through a comparison of website assessments obtained via a full and reduced set of website assessment criteria.
Rocznik
Strony
315--325
Opis fizyczny
Biboliogr. 22 poz.
Twórcy
autor
Bibliografia
  • [1] Barnes S.J., Vidgen R.T., Assessing the Quality of a Cross-National e-Government Web Site: a Case Study of the Forum on Strategic Management Knowledge Exchange, in: Proceedings of the 36th Annual Hawaii International Conference on System Sciences (HICSS'03'), IEEE Computer Society, Washington, 2003, 135.1.
  • [2] Barnes S.J., Vidgen R.T., Data triangulation and web quality metrics: A case study in e-government, Information & Management, 43, 2006, 767-777.
  • [3] Barnes S.J., Vidgen R.T., Data Triangulation in action: using comment analysis to refine web quality metrics, in: Proceedings of the 13th European Conference on Information Systems, Regensburg, 2005.
  • [4] Barnes S.J., Vidgen R.T., The eQual Approach to the Assessment of E-Commerce Quality: A Longitudinal Study of Internet Bookstores, in: W. Suh (eds.), Web Engineering: Principles and Techniques, Idea Group Poublishing, London, 2005, 161-181.
  • [5] Barnes S.J., Vidgen R.T., WebQual: An Exploration of Website Quality, in: Proceedings of the Eight European Conference on Information Systems, Vienna, 2000, 1,298-305.
  • [6] Brans J-P., Mareschal B., Promethee Methods, in: J. Figueira (eds.), Multiple Criteria Decision Analysis, Springer, Boston, 2005, 163-195.
  • [7] Empirix, http://empirix.com/news/press/2006/2006-06-14.asp
  • [8] Google, http://www.google.com/adplanner/static/topl000/index.html
  • [9] Google, http://www.google.com/adplanner/static/topl00countries/pl.html
  • [10]Grigoroudis E., Litos C., Moustakis V.A., Politis Y., Tsironis L., The assessment of user-perceived web quality: Application of a satisfaction benchmarking approach, European Journal of Operational Research, 187, 2008, 1346-1357.
  • [11] Hwang J., Yoon Y.-S., Park N.-H., Structural effects of cognitive and affective reponses web advertisements, website and brand attitudes, and purchase intentions: The case of casual-dining restaurants, International Journal of Hospitality Management, 30, 2011, 897-907.
  • [12] International Telecomunication Union, http://www.itu.int/ITU-D/ict/statistics/ at_glance/KeyTelecom.html
  • [13] Kim S., Stoel L., Dimensional hierarchy of retail website quality, Information & Management, 41, 2004, 619-633.
  • [14] Lin C.S., Wu S., Tsai R.J., Integrating perceived playfulness into expectation-confirmation model for web portal context, Information & Management, 42, 2005, 683-693.
  • [15] Netcraft, http://news.netcrafl.com/archives/201 l/03/09/march-2011-web-server-survey.html
  • [16] Pawlak Z., Skowron A., Rough sets and Boolean reasoning, Information Sciences, 177, 2007,41-73.
  • [17] Predki B., Słowiński R., Stefanowski J., Susmaga R., Wilk S., ROSE - Software Implementation of the Rough Set Theory, Lecture Notes in Computer Science, 1424, 1998, 605-608.
  • [18] Rokach L., Maimon O., Classification Trees, in: O. Maimon, L. Rokach (eds.), Data Mining and Knowledge Discovery Handbook, Springer, New York, 2010, 149-174.
  • [19] Rokach L., Maimon O., Supervised Learning, in: O. Maimon, L. Rokach (eds.), Data Mining and Knowledge Discovery Handbook, Springer, New York, 2010, 133-148.
  • [20] Webb G.I., Association Rules, in: N. Ye (eds.), The Handbook of Data Mining, Lawrence Erlbaum Associates, Mahwah, 2003, 25-40.
  • [21] Zenebe A., Zhou L., Norcio A.F., User preferences discovery using fuzzy models, Fuzzy Sets and Systems, 161, 2010, 3044-3063.
  • [22] Ziemba P., Piwowarski M., Methods of the quality assessment in web portals (Metody oceny jakości portali internetowych), Studies & Procedings of Polish Association for Knowledge Management (Studia i Materiały Polskiego Stowarzyszenia Zarządzania Wiedzą), 27, 2010, 278-293.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP2-0019-0071
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.