PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Jeszcze jedna funkcja mikrobiologicznych ogniw paliwowych w oczyszczaniu ścieków: wytwarzanie wody o wysokiej jakości

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
One more function for microbial fuel cells in treating wastewater: producing high-quality water
Języki publikacji
PL
Abstrakty
PL
Zrównoważona technologia oczyszczania ścieków powinna skutecznie obniżać stężenie zanieczyszczeń, odzyskiwać energię i minimalizować zrzut cieczy. Potencjalnym kandydatem na taką technologię jest mikrobiologiczne ogniwo paliwowe (MFC - ang. Microbial Fuel Cell), które może wytwarzać bioelektryczność bezpośrednio z oczyszczania ścieków. Jednak oczyszczony ściek z MFC nie jest ponownie wykorzystywany z powodu niezadowalającej jakości wody. Do wytwarzania wody o wysokiej jakości za pomocą MFC zaproponowaliśmy i zbadaliśmy dwie metody wykorzystujące zintegrowane technologie membranowe. W szczególności osmotyczne MFC, w których wykorzystuje się osmozę wymuszoną (ang. forward osmosis) i MFC, okazały się wykonalne w badaniach na skalę laboratoryjną. Nowa funkcja polegająca na wytwarzaniu wody o wysokiej jakości, choć nadal stanowiąca duże wyzwanie, czyni z MFC obiecującą metodę ekologicznie zrównoważonego oczyszczania ścieków.
EN
A sustainable wastewater treatment technology should effectively reduce contaminant concentration, recovery energy contents and minimize liquid discharge. A potential candidate for such a technology is a microbial fuel cell (MFC) that can produce bioelectricity directly from wastewater treatment. However, the treated effluent from MFCs is not reused because of unsatisfied water quality. To produce high-quality water using MFCs, we proposed and studied two approaches with integrated membrane technologies. Especially, the osmotic MFCs that take advantage of both forward osmosis and MFCs have been proven feasible with bench-scale studies. The new function of producing high-quality water, although still very challengeable, will make MFCs a promising approach for sustainable wastewater treatment.
Czasopismo
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 35 poz., 4 rys.
Twórcy
autor
  • Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee, USA
Bibliografia
  • 1. Logan B.E., Hamelers B., Rozendal R.A.; Schroder U., Keller J., Freguia S.m Aelterman R, Verstraete W., Rabaey K.: Microbial fuel cells: methodology and technology. Environmental Science and Technology 2006, 40, 17, 5181 -5192.
  • 2. He Z., Wagner N., Minteer S.D., Angenent L.T: An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environmental Science & Technology 2006,40, 17, 5212-5217.
  • 3. Rabaey K., Clauwaert R, Aelterman R, Verstraete W.: Tubular microbial fuel cells for efficient electricity generation. Environmental Science and Technology 2005, 39, 20, 8077-8082.
  • 4. Liu H., Logan B.E.: Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science and Technology 2004, 38, 14, 4040-6.
  • 5. Katz E.: ShipwayA.N.,Willner I.: Biochemical fuel cells. In Handbook of Fuel Cells - Fundamentals, Technology and Applications; Vielstich W., Gasteiger H.A., Lamm A., Eds. John Wiley & Sons, Ltd: 2003; Vol. I.
  • 6. Gorby Y.A., Yanina S., McLean J.S., Rosso K.M., Moyles D., Dohnalkova A., Beveridge T.J., Chang I.S., Kim B.H., Kim K.S., Culley D.E., Reed S.B., Romine M.F., Saffarini D.A., Hill E.A, Shi L„ Elias D.A., Kennedy D.W., Pinchuk G., Watanabe K., Ishii S., Logan B., Nealson K.H., Fredrickson J.K.: Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America 2006, 103, 30, 11358-63.
  • 7. Lovley D.R.: Microbial fuel cell: novel microbial physiologies and engineering approaches. Current Opinion in Biotechnology 2006, 17, 3, 327-332.
  • 8. Bretschger O., Obraztsova A., Sturm C.A., Chang, I.S., Gorby Y.A., Reed S.B., Culley D.E., Reardon CL., BaruaS., Romine M.F, Zhou J., BeliaevA.S., Bouhenni R., Saffarini D., Mansfeld F., Kim B.H., Fredrickson J.K., Nealson K.H.: Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Applied and Environmental Microbiology 2007, 73,21,7003-7012.
  • 9. Logan B.E.: Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology 2009, 7, 5, 375-81.
  • 10. Fricke K., Harnisch F., Schroder U.: On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy & Environmental Science 2008, I, I, 144-147.
  • 11. He Z., Mansfeld F.: Exploring the use of electrochemical impedance spectroscopy in microbial fuel cell studies. Energy & Environmental Science 2009, 2,215-219.
  • 12. Logan B.E., Call D., Cheng S., Hamelers H.V, Sleutels T.H., Jeremiasse A.W., Rozendal R.A.: Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environmental Science & Technology 2008, 42, 23, 8630-40.
  • 13. Cao X., Huang X., Liang R, Xiao K., Zhou Y., Zhang X., Logan B.E.: A new method for water desalination using microbial desalination cells. Environmental Science & Technology 2009, 43, 18, 7148-52.
  • 14. Pant D., Van Bogaert G., Diels L., Vanbroekhoven K.: A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology 2010, 101,6, 1533-1543.
  • 15. Cath TY, Childress A.E.; Elimelech M.: Forward osmosis: principles, applications, and recent developments. Journal of Membrane Science 2006,281, 70-87.
  • 16. Ng H.Y., Tang W„ Wong W.S.: Performance of forward (direct) osmosis process: membrane structure and transport phenomenon. Environmental Science & Technology 2006, 40, 7, 2408-13.
  • 17. McCutcheon J.R., Elimelech M.: Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis Journal of Membrane Science 2006, 284, 1-2, 237-247.
  • 18. Yang Q„ Wang K.Y., Chung T.S.: Dual-layer hollow fibers with enhanced flux as novel forward osmosis membranes for water production. Environmental Science & Technology 2009, 43, 8, 2800-5.
  • 19. Yip N.Y., Tiraferri A., Phillip W.A., Schiffman J.D., Elimelech M.: High performance thin-film composite forward osmosis membrane. Environmental Science & Technology 2010, 44, 10, 3812-8.
  • 20. Kravath R.E., Davis J.A.: Desalination of seawater by direct osmosis. Desalination 1975, 16, 151-155.
  • 21. McCutcheon J.R., McGinnis R.L., Elimelech M.: A novel ammonia—carbon dioxide forward (direct) osmosis desalination process. Desalination 2005, 174,(1), l-ll.
  • 22. Ling M.M., Wang K.Y., Chung T.S.: Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse. Industrial & Engineering Chemistry Research 2010, 49, 12, 5869-5876.
  • 23. Li D., Zhang X., Yao J., Simon G.R, Wang H.: Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chem Commun (Camb) 2011,47, 6, 1710-2.
  • 24. Cath TY., Gormly S., Beaudry E.G., Flynn M.T., Adams VD„ Childress A.E.: Membrane contactor processes for wastewater reclamation in space. I. direct osmotic concentration as pretreatment for reverse osmosis. Journal of Membrane Science 2005, 257, 85-98.
  • 25. Cath T.Y., Childress A.E.: Membrane contactor processes for wastewater reclamation in space. II. combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater. Journal of Membrane Science 2005, 257, 111 -119.
  • 26. Holloway R.W., Childress A.E., Dennett K.E., Cath TY.: Forward osmosis for concentration of anaerobic digester centrate. Water Research 2007, 41, 17, 4005-14.
  • 27. Cornelissen E.R., Harmsen D., Beerendonk E.F., Qin J.J., Oo H„ de Korte K.F, Kappelhof J.W. M.N.: The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater. Water Science & Technology 2011, 63, 8, 1557-1565.
  • 28. Talaat K.M.: Forward osmosis process for dialysis fluid regeneration. Artificial Organs 2009, 33, 12, 1133-5.
  • 29. Leob S.: Large-scale power production by pressure-retarded osmosis using river water and sea water passing through spiral modules. Desalination 2002, 143, 115-122.
  • 30. Beaudry E.G.,Lampi K.A.: Membrane technology for direct osmosis concentration of fruit juice. Food Technology 1990, 44, 121.
  • 31. Singer E.: New technologies deliver in treating neurological diseases. Natural Medicines 2004, 10, 12, 1267.
  • 32. Achilli A., Cath T.Y., Marchand E.A., Childress A.E.: The forward osmosis membrane bioreactor: A low fouling alternative toMBR processes. Desalination 2009, 239, 10-21.
  • 33. Zhang F., Brastad K., He Z.: Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation. Environmental Science & Technology 201 1, 45, 6690-6696.
  • 34. Jacobson K.S., Drew D., He Z.: Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environmental Science & Technology 2011,45,4652-4657.
  • 35. Liu Z., Bai H„ Lee J., Sun D.D.: A low-energy forward osmosis process to produce drinking water. Energy & Environmental Science 2011, 4, 2582-2585.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP2-0015-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.