PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Slightly ω-continuos functions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new weak form of both slightly continuous and ω-continuous, called slightly ω-continuous, is introduced and studied. Furthermore, basic properties and preservation theorems of slightly ω-continuous functions are investigated. Relationships between slightly ω-continuous functions and set ω-connected functions are investigated.
Rocznik
Tom
Strony
97--106
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
autor
Bibliografia
  • [1] Al-Omari A., Noorani M.S.M., Regular generalized ω-closed sets, Internal J. Math. Math. ScL, vol. 2007, Article ID 16292, 11 pages.
  • [2] Al-Omari A., Noorani M.S.M., Contra-ω-continuous and almost contra-ω-continuous, Internal J. Math. Math. Sci., vol. 2007, Article ID 40469, 13 pages.
  • [3] Al-Hawary T.A., Al-Omari A., Between open and ω-open sets, Questions Answers Gen. Topology,24(2)(2006), 67-78.
  • [4] Al-Zoubi K., Al-Nashef B., The topology of ω-open subsets, Al-Manareh Journal, 26(2)(2003), 169-179.
  • [5] Baker C.B., Slightly precontinuous functions, Acta Math. Hungar., 94(1-2) (2002), 45-52.
  • [6] Ekici E., Caldas M., Slightly γ-continuous functions, Bol. Soc. Paran. Mat., 22(2)(2004), 63-74.
  • [7] Hdeib H.Z., ω-closed mapping, Rev. Colombiana Mat., 16(3-4)(1982), 65-78.
  • [8] Hdeib H.Z., ω-continuous functions, Dirasat, 16(2)(1989), 136-142.
  • [9] Jain R.C., The role of regularly open sets in general topology, Ph.D. Thesis, Meerut Univ., Meerut 1980.
  • [10] Kwak J.H., Set-connented mappings, Kyunpook Math. J., 11(1971), 169-172.
  • [11] Noiri T., Slightly ß-continuous functions, Internal J. Math. Math. Sci., 28(8) (2001), 469-478.
  • [12] Noiri T., Chae G.I., A note on slightly semi-continuous functions, Bull. Calcutta Math. Soc., 92(2)(2000), 87-92.
  • [13] Nour T.M., Slightly semi-continuous functions, Bull. Calcutta Math. Soc., 87(2)(1995), 187-199.
  • [14] Singal A.R., Yadav D.S., A generalisation of semi continuous mappings, J. Bihar Math. Soc., 11(1987), 1-9.
  • [15] Staum R., The algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math., 50(1974), 169-185.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP2-0014-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.