PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some properties of multivariate beta operator

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work relates to multivariate beta operator which is expressed shortly as Bn. We show that the operator preserves Lipschitz constant of a Lipschitz continuous function and semi-additivity of the relevant operand. Furthermore, we provide an r-th order generalisation, Bn (r), of Bn.
Rocznik
Tom
Strony
31--43
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
Bibliografia
  • [1] Anastassiou G.A., Gal S.G., Approximation theory. Moduli of continuity and global smoothness preservation, Birkhäuser Boston, Inc., Boston, MA, 2000.
  • [2] Abel U., Gupta V., Mohapatra R.N., Local approximation by Beta operators, Nonlinear Anal, 62(1)(2005), 41-52.
  • [3] Bloom W.R., Elliot D., The modulus of continuity of the remainder in the approximation of Lipschitz functions, J. Approx. Theory, 31(1981), 59-66.
  • [4] Brown B.M., Elliot D., Paget D.F., Lipschitz constants for Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theory, 49(1987), 196-199.
  • [5] de la Cal J., Valle A.M., Best constants in global smoothness preservation inequalities for some multivariate operators, J. Approx. Theory, 97(1) (1999), 158-180.
  • [6] de la Cal J., Valle A.M., Global smoothness preservation by multivariate Bernstein-type operators, Handbook of analytic-computational methods in applied mathematics, 667-707, Chapman & Hall/CRC, Boca Raton, FL, 2000.
  • [7] Feller W., An introduction to probability theory and its applications, Vol. II. Second edition John Wiley & Sons, Inc., New York 1971.
  • [8] Khan M.K., Approximation properties of beta operators, Progress in approximation theory, Academic Press, Boston, MA., (1991), 483-495.
  • [9] Khan M.K., Peters M.A., Lipschitz constants for some approximation operators of a Lipschitz continuous function, J. Approx. Theory, 59(3) (1989), 307-315.
  • [10] Khan M.K., Della Vecchia B., Fassih A., On the monotonicity of positive linear operators, J. Approx. Theory, 92(1)(1998), 22-37.
  • [11] Kirov G., Popova L., A generalization of the linear positive operators, Math. Balkanica, (N.S.) 7(2)(1993), 149-162.
  • [12] Li Z., Bernstein polynomials and modulus of continuity, J. Approx. Theory, 102(1)(2000), 171-174.
  • [13] Lupaş A., Die Falge der Beta operatorem, Dissertation, Universitat Stuttgart, 1972.
  • [14] Timan A. P., The Theory of Approximation of the Functions of Real Variables, Phizmatgiz, 1960.
  • [15] Upreti R., Approximation properties of beta operators, J. Approx. Theory, 45(2)(1985), 85-89.
  • [16] Volkov V.I., On the convergence of sequences of linear positive operators in the space of continuous functions of two variables, (Russian), Dokl. Akad. Nauk SSSR, (N.S.) 115(1957), 17-19.
  • [17] Wilks S.S., Mathematical Statistics, Wiley, New-York, 1963.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP2-0014-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.