Nina HUTNIK, Andrzej MATYNIA, Anna KOZIK, Agata MAZIEŃCZUK

e-mail: nina.hutnik@pwr.wroc.pl

Wydział Chemiczny, Politechnika Wrocławska, Wrocław

Wpływ obecności i stężenia zanieczyszczeń w roztworach fosforanów(V) na rozmiary kryształów struwitu wydzielanego z tych roztworów w procesie ciągłej krystalizacji strąceniowej

Wstęp

Znaczący wpływ na przebieg i rezultaty wytrącania i krystalizacji struwitu MgNH₄PO₄·6H₂O (MAP) z roztworów zawierających jony fosforanowe(V) maja zanieczyszczenia nieorganiczne [1]. Są to przede wszystkim jony metali, ale także siarczany(VI), azotany(V), chlorki i fluorki. Inhibituja lub katalizuja one przebieg reakcji otrzymywania struwitu, wpływaja na szybkość zarodkowania i wzrostu jego kryształów, ich końcowy pokrój i ewentualną aglomerację [2, 3]. Niektóre jony metali w środowisku alkalicznym wytrącania struwitu moga tworzyć współstrącające się trudno rozpuszczalne wodorotlenki lub fosforany [4-8], co w istotny sposób różnicuje skład chemiczny produktu i ogranicza możliwość jego dalszego wykorzystania [9].

W pracy przedstawiono wyniki badań dotyczące wpływu obecności i stężenia wybranych jonów zanieczyszczeń w roztworze fosforanów(V) na średni rozmiar L_m kryształów struwitu wydzielanego z tego roztworu. Przebadano wpływ każdego z następujących jonów: Al³⁺ $Ca^{2+}, Cu^{2+}, Fe^{2+}, Fe^{3+}, K^+, Zn^{2+}, F^-, NO_3^-, SiF_6^{2-} i SO_4^{2-}$ przy ustalonych ich indywidualnych stężeniach (5 wartości) w roztworach fosforanów(V). Stężenie [PO₄³⁻]_{RM} wynosiło 1,0% mas. Badania przeprowadzono w krystalizatorze laboratoryjnym o działaniu ciągłym typu DT MSMPR (Draft Tube, Mixed Suspension Mixed Product Removal) z mieszadłem śmigłowym. Objętość robocza krystalizatora wynosiła 0,6 dm3.

Metodyka i zakres badań

Opis instalacji doświadczalnej o działaniu ciągłym i sposób wykonania badań przedstawiono szczegółowo w pracach [3, 6]. Sterowanie, kontrola i rejestracja danych pomiarowych odbywały się za pomocą komputera. Do precyzyjnej kontroli pracy układu pomiarowego pracującego w stanie ustalonym wykorzystano oprogramowanie IKA labworldsoft.

Do krystalizatora podawano w sposób ciągły roztwór zasilający przygotowany uprzednio w mieszalniku z chemicznie czystych substancji (cz.d.a. POCh Gliwice): diwodorofosforanu amonu NH4H2PO4, chlorku magnezu MgCl₂·6H₂O i kolejno badanych zanieczyszczeń (AlCl₃·6H₂O, CaCl₂·2H₂O, CuCl₂·2H₂O, FeCl₂·4H₂O, FeCl₃·6H₂O, KCl, ZnCl₂, NaF, NaNO₃, Na₂SiF₆ lub Na₂SO₄) oraz wody zdejonizowanej (Barnstead -NANOpure DIamond). Do krystalizatora wprowadzano również wodny roztwór wodorotlenku sodu o stężeniu 20% mas. NaOH w proporcjach zapewniających założoną, kontrolowaną wartość pH środowiska wytrącania i wzrostu kryształów struwitu. Badania przeprowadzono w temperaturze 298 K zakładając pH = 9 i średni czas przebywania zawiesiny w krystalizatorze $\tau = 900$ s. Stężenia zasadniczych reagentów w roztworze zasilającym krystalizator DT MSMPR były stałe: $[PO_4^{3-}]_{RM} = 1,0\%$ mas., $[Mg^{2^+}]_{RM} = 0.256\%$ mas. i $[NH_4^+]_{RM} = 0.190\%$ mas. (stosunek molowy reagentów wynosił 1:1:1). Stężenia jonów zanieczyszczeń przyjęto w zakresie wartości ich stężeń w różnych ściekach komunalnych i przemysłowych (Tab. 1). Po ustaleniu się w krystalizatorze zadanych wartości parametrów, proces w stanie ustalonym prowadzono jeszcze przez 5r (4500 s). Rozkład rozmiarów kryształów otrzymanych produktów wyznaczono za pomocą laserowego analizatora cząstek stałych COULTER LS-230, natomiast ich kształt – z obrazów z elektronowego mikroskopu skaningowego JEOL JSM 5800LV. Dokładność danych pomiarowych rozpatrywanego procesu przebiegającego w laboratoryjnej instalacji o działaniu ciągłym oszacowano na ok. 10%.

Wyniki badań

Wyniki badań ciągłego procesu wytrącania i krystalizacji struwitu z roztworów wodnych zawierających 1,0% mas. jonów fosforanowych(V), jony magnezu i amonu w proporcjach stechiometrycznych oraz wybrane jony zanieczyszczeń przedstawiono w tab. 1. Ponieważ temperatura procesu $T = 298 \pm 0.2$ K, $pH = 9 \pm 0.1$, średni czas przebywania zawiesiny kryształów w krystalizatorze $\tau = 900\pm 20$ s oraz intensywność mieszania i cyrkulacji zawiesiny (obroty mieszadła wynosiły 6,6±0,1 1/s) były we wszystkich pomiarach stałe, możliwe było bezpośrednie porównanie wpływu wybranych jonów zanieczyszczeń na jakość odbieranych z krystalizatora produktów. Do porównań przyjęto średni rozmiar kryształów $L_{\rm m}$ oraz stosunek długości kryształów $L_{\rm a}$ do ich szerokości $L_{\rm b}$. Tę ostatnią wielkość, $L_{\rm a}/L_{\rm b}$, obliczono na podstawie pomiarów planimetrycznych 50 kryształów losowo wybranych z trzech zdjęć mikroskopowych próbki każdego produktu. W tab. 1 zamieszczono wartość średnią L_a/L_b [3]. Wpływ stężenia badanych jonów c_i [% mas.] w roztworze zasilającym krystalizator o działaniu ciągłym na średni rozmiar $L_{\rm m}$ [µm] kryształów produktu opracowano w postaci korelacji:

$$L_{\rm m} = a + b c_{\rm j} \tag{1}$$

Do wyznaczenia parametrów a i b wykorzystano pięć wartości L_m produktów otrzymanych przy pH = 9 i $\tau = 900$ s, w zakresie stężeń zanieczyszczeń podanych w tab. 1. Wartości obliczonych parametrów a i b oraz średni błąd względny s_w korelacji zestawiono w tab. 1.

Tab. 1. Wpływ stężenia jonów zanieczyszczeń nieorganicznych w wodnym roztworze jonów fosforanowych(V) na średni rozmiar kryształów struwitu wydzielanego z tych roztworów w procesie ciągłej krystalizacji strąceniowej

Jony	Zakres stężenia % mas.	Korelacja $L_{\rm m} = a + b c_{\rm j}, \mu {\rm m}$		S _W	L _m ^{*)}	$L_{a}/L_{b}^{**})$
		а	b	70	μm	[3]
Al ³⁺	$(1-20)\cdot 10^{-3}$	31,8	$5,52 \cdot 10^2$	3,0	32,2-42,3	6,0
Ca ²⁺	$(1-20) \cdot 10^{-2}$	36,8	-74,3	10,2	34,2–18,4	4,2
Cu ²⁺	$(1-10) \cdot 10^{-5}$	27,0	3,13·10 ⁴	2,6	26,3–29,6	6,6
Fe ²⁺	$(1-10) \cdot 10^{-4}$	36,9	$-8,29 \cdot 10^{3}$	1,0	36,5-28,6	5,0
Fe ³⁺	$(1-10) \cdot 10^{-4}$	34,9	$-9,98 \cdot 10^{3}$	4,9	35,5-26,0	4,6
K ⁺	$(1-20) \cdot 10^{-2}$	30,1	70,1	4,8	30,9-44,1	5,3
Zn ²⁺	$(1-10) \cdot 10^{-5}$	33,1	$-6,43 \cdot 10^4$	3,0	34,0-27,2	8,4
F ⁻	$(2,5-25)\cdot 10^{-3}$	32,1	$4,97 \cdot 10^2$	2,5	32,5-44,1	5,9
NO ₃ ⁻	0,0443–0,886	31,1	-9,86	2,6	31,0-21,9	6,4
SiF ₆ ²⁻	$(1,25-5)\cdot 10^{-2}$	26,2	$2,74 \cdot 10^2$	1,1	30,0-40,1	5,1
SO4 ²⁻	(5-100).10 ⁻²	29,7	-1,30	9,6	32,6-30,4	7,5
Bez dodatku jonów zanieczyszczenia					27,5	6,0

*) Średni rozmiar L_m kryształów produktu dla najmniejszej i największej wartości stężenia badanego jonu zanieczyszczenia (wartości doświadczalne) **) Wartość średnia

Średnia zawartość kryształów w zawiesinie: 24,8 ±0,1 kg/m3 zawiesiny Zawartość fosforanów w poprocesowym roztworze macierzystym: 0.002-0.020% mas.

 $L_{\rm m} = \Sigma x_{\rm i} L_{\rm i}$, gdzie: $x_{\rm i}$ – udział masowy frakcji kryształów o średnim rozmiarze $L_{\rm i}$

Nr 5/2011

Obecność jonów zanieczyszczeń w wyraźny sposób wpłynęła na rozmiary kryształów struwitu. Korzystnie oddziaływały jony glinu, miedzi(II), potasu, fluorkowe i fluorokrzemianowe. Średni rozmiar kryształów struwitu zwiększył się średnio o ponad 30%. Największy przyrost wartości L_m zanotowano w obecności jonów potasu (o 42,7%, z 30,9 do 44,1 µm). Natomiast obecność jonów wapnia, żelaza(II) i (III), cynku, azotanowych(V), siarczanowych(VI) nie sprzyjała otrzymywaniu produktu o dużych rozmiarach kryształów. Ich średni rozmiar zmniejszył się średnio o ok. 25%. Największy spadek wartości L_m odpowiadał obecności jonów wapnia (o ponad 46%, z 34,2 do 18,4 µm). Na tak znaczące zmniejszenie się wartości tego parametru rozkładu rozmiarów kryształów miała wpływ również obecność w produkcie cząstek hydroksyapatytu Ca₅(PO₄)₃OH, których rozmiary nie przekraczały 3 µm [8]. Podobnie wpływały na rozkład rozmiarów populacji kryształów wodorotlenki glinu [4], żelaza(II) [5] i żelaza(III) [6].

Rys. 1. Obrazy mikroskopowe przykładowych produktów otrzymanych z krystalizatora DT MSMPR w obecności: 0,002% mas. Al³⁺, 0,05% mas. Ca²⁺, 2·10⁻⁵% mas. Cu²⁺, 5·10⁻⁴% mas. Fe²⁺, 2·10⁻⁴% mas. Fe³⁺, 0,025% mas. K⁺, 2·10⁻⁵% mas. Zn²⁺, 0,01% mas F⁻, 0,0886% mas. NO₃⁻, 0,10% mas. SO₄²⁻ [3]. Parametry procesu: *T* = 298 K, pH = 9, $\tau = 900$ s. Powiększenie: 500×

Na rys. 1 przedstawiono przykładowe obrazy mikroskopowe populacji kryształów struwitu. Widoczne są różnice rozmiarów i kształtu kryształów struwitu oraz uszkodzenia ich powierzchni i końców. Widoczne są także cząstki innych ciał stałych, przede wszystkim wodorotlenków Al(OH)₃, Fe(OH)₂ i Fe(OH)₃ oraz hydroksyapatytu Ca₅(PO- $_{4}$)₃OH. Produkty te zawierały (bez przemywania kryształów wodą na filtrze) odpowiednio 0,054% mas. Al [4], 0,0205% mas. Fe_(total) (Fe²⁺) [5], 0,008% mas. Fe_(total) (Fe³⁺) [6], 1,8% mas. Ca_(total) [8].

Kryształy struwitu wydzielane z roztworu nie zawierającego jonów zanieczyszczeń charakteryzowały się stosunkiem ich długości L_a do ich szerokości L_b wynoszącym średnio 6,0. Obecność jonów zanieczyszczeń w tym roztworze spowodowała w niektórych badanych przypadkach znaczące zmiany tych proporcji. Kryształy struwitu produkowane w obecności jonów cynku i jonów siarczanowych(V) były wyraźnie cieńsze ($L_a/L_b = 8,4$ (Zn^{2+}), 7,5 (SO_4^{2-}), natomiast w obecności jonów wapnia, żelaza(II) i (III), fluorokrzemianowych i potasu – wyraźnie grubsze ($L_a/L_b = 4,2-5,3$). Pozostałe badane jony nie wpływały znacząco na kształt kryształów struwitu ($L_a/L_b = 5,9-6,6$).

Wnioski

W procesie ciągłego usuwania jonów fosforanowych(V) za pomocą jonów magnezu i amonu z rozcieńczonych wodnych roztworów zawierających dodatkowo zanieczyszczenia nieorganiczne stwierdzono, że niektóre z badanych jonów zanieczyszczeń powodowały znaczące zmiany rozmiarów kryształów wydzielanego struwitu, a także zmiany w ich budowie, kształcie i pokroju.

Naśredni rozmiar odbieranych z krystalizatora kryształów struwitu korzystnie oddziaływały jony glinu, miedzi(II), potasu, fluorkowe i fluorokrzemianowe. Natomiast w obecności jonów wapnia zanotowano największy spadek wartości średniego rozmiaru kryształów produktu (o ponad 46%).

Kryształy struwitu w obecności jonów cynku i jonów siarczanowych(VI) były wyraźnie cieńsze, natomiast w obecności jonów wapnia, żelaza(II) i (III), fluorokrzemianowych i potasu – wyraźnie grubsze.

Na zdjęciach mikroskopowych można dostrzec różne formy, w jakich może występować struwit, w tym przede wszystkim charakterystyczne w kształcie kryształy rurowe. Większość z nich, szczególnie kryształy o większych rozmiarach, wykazywała wyraźne pęknięcia wzdłuż osi podłużnej, liczne pęknięcia na powierzchni i zdeformowane końce, świadczące o znacznych naprężeniach występujących w ich strukturze. Różnorodność form kryształów struwitu była spowodowana przede wszystkim wysokim przesyceniem roboczym w roztworze macierzy-stym, obecnością w tym roztworze innych jonów (głównie badanych zanieczyszczeń, ale także jonów chlorkowych i sodu), intensywnością mieszania i cyrkulacji wewnętrznej zawiesiny, lokalnymi wahaniami wartości *pH* środowiska wytrącania i krystalizacji struwitu, itp.

LITERATURA

- K. S. Le Corre, E. Valsami-Jones, P. Hobbs, S. A. Parsons: Crit. Rev. Environ. Sci. Technol. 39, 433 (2009).
- [2] J. Doyle, S. A. Parsons: Wat. Res. 36, 3925 (2002).
- [3] N. Hutnik, K. Piotrowski, J. Gluzińska, A. Matynia: Progr. Environ. Sci. Technol. 3 (2011) w druku.
- [4] N. Hutnik, B. Wierzbowska, A. Matynia, K. Piotrowski, J. Gluzińska: Chemik 61, 505 (2008).
- [5] N. Hutnik, K. Piotrowski, B. Wierzbowska, A. Matynia: Proceedings of 19th International Congress of Chemical and Process Engineering, CHISA, Prague, Czech Republic, CD–ROM No. 0398 (2010).
- [6] N. Hutnik, A. Matynia, B. Wierzbowska: Chemik 64, 820 (2010).
- [7] K. S. Le Corre, E. Valsami-Jones, P. Hobbs, S. A. Parsons: J. Cryst. Growth 283, 514 (2005).
- [8] N. Hutnik, K. Piotrowski, B. Wierzbowska, A. Matynia: Cryst. Res. Technol. (2011) – w druku.
- [9] L.E. de-Bashan, Y. Bashan: Wat. Res. 38, 4222 (2004).

Praca naukowa finansowana ze środków na naukę jako projekty badawcze własne: NN209 0108 34 (2008–2011) i NN209 1174 37 (2009–2012).