Elżbieta GABRUŚ, Bogdan AMBROŻEK

e-mail: elzbieta.gabrus@zut.edu.pl

Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska, Zachodniopomorski Uniwersytet Technologiczny, Szczecin

Doświadczalne badania regeneracji złoża po adsorpcji z fazy ciekłej

Wstęp

Proces adsorpcji stosowany jest powszechnie do oczyszczania i rozdzielania składników roztworów ciekłych. Do selektywnej adsorpcji składników cieczy stosowane są zeolitowe sita molekularne. Najczęściej procesy adsorpcyjne prowadzone są w kolumnach adsorpcyjnych z nieruchomym złożem adsorbentu, które pracuje do momentu przebicia (dla pojedynczego adsorbera) lub nasycenia złoża (dla instalacji wielokolumnowej z kolumnami połączonymi szeregowo). Po wyczerpaniu pojemności adsorpcyjnej złoża następuje etap jego regeneracji do poziomu wystarczającego do ponownego użycia adsorbentu.

Jednym z ważnych zastosowań procesu adsorpcji jest osuszanie cieczy organicznych zawierających niewielkie ilości wody. W ostatnich latach duże znaczenie mają procesy adsorpcyjnego osuszania etanolu stosowanego jako biopaliwo [1]. Mogą być one prowadzone zarówno w instalacjach zmiennotemperaturowych (TSA) jak i zmiennociśnieniowych (PSA) [1, 2]. Woda może być usuwana z fazy ciekłej lub z mieszaniny par. W metodzie PSA zaadsorbowane substancje desorbowane są ze złoża przez obniżenie ciśnienia (adsorpcja prowadzona jest z mieszaniny par pod ciśnieniem wyższym niż desorpcja), a w metodzie TSA desorpcja realizowana jest z użyciem gorącego gazu inertnego.

Tematyka adsorpcyjnego osuszania ciekłego etanolu na zeolitach w układzie kolumnowym jest znana z prac [3–6]. Badania efektów energetycznych adsorpcji i desorpcji wody oraz etanolu na zeolitach 3A i 5A przeprowadził *Lalik* i inni [6]. W literaturze brak jest danych dotyczących regeneracji zużytego mokrego adsorbentu zeolitowego wykorzystywanego do usuwania wody z fazy ciekłej. Większość opublikowanych w literaturze prac dotyczy regeneracji złoża stosowanego do adsorpcji wody z mieszaniny par [1, 2].

W pracy niniejszej przedstawiono wyniki badań doświadczalnych regeneracji zeolitowych sit molekularnych 3A stosowanych do osuszania dwóch związków organicznych: etanolu i n-propanolu. Proces adsorpcji wody prowadzony był z fazy ciekłej.

Badania doświadczalne

Badania doświadczalne wykonano z użyciem jednokolumnowej laboratoryjnej instalacji TSA własnej konstrukcji, omówionej szczegółowo w pracy [7]. Na pełen cykl pracy kolumny adsorpcyjnej składały się następujące etapy: adsorpcja wody z fazy ciekłej, grawitacyjne opróżnianie kolumny z cieczy, przedmuchiwanie złoża zimnym powietrzem, desorpcja termiczna za pomocą ogrzanego strumienia powietrza połączona z odzyskiwaniem związków organicznych ze strumienia parowopowietrznego odprowadzanego z kolumny adsorpcyjnej oraz chłodzenie złoża.

Podstawowym elementem instalacji badawczej była kolumna adsorpcyjna wykonana ze stali kwasoodpornej. Wysokość i średnica wewnętrzna kolumny adsorpcyjnej wynosiły odpowiednio 0,8 i 0,05 m. Wysokość złoża adsorbentu w kolumnie była równa 0,76 m. Kolumna zaizolowana była z zewnątrz warstwą wełny mineralnej o grubości około 0,05 m. W skład instalacji wchodziły ponadto: pompa wymuszająca przepływ cieczy oraz zbiorniki surowca i produktu. Nad kolumną umieszczono podgrzewacz, w którym ogrzewane było powietrze w etapie desorpcji, a poniżej kolumny zamontowano skraplacz i zbiornik desorbatów. W osi złoża rozmieszczono cztery króćce do pobierania próbek cieczy w etapie adsorpcji, na wysokościach 0,2; 0,4; 0,6 i 0,76 m licząc od dolnej powierzchni złoża. Stężenie wody w próbkach cieczy mierzono metodą chromatograficzną.

W czasie doświadczeń stosowano rejestracją ciągłą wyników pomiaru temperatury dokonywanych za pomocą pięciu termopar (umieszczonych w odległości 0,1; 0,2; 0,4; 0,6 i 0,75 m od dolnej powierzchni złoża) wyposażonych w przetworniki analogowo-cyfrowe. Podczas adsorpcji do kolumny adsorpcyjnej doprowadzano ciekły związek organiczny o znanej zawartości wody. Temperatura cieczy na wlocie do kolumny wynosiła 30°C. Mierzono stężenie wody na różnych wysokościach złoża. Adsorpcję prowadzono do chwili całkowitego nasycenia złoża wodą.

Po zakończeniu adsorpcji odprowadzano najpierw ciecz z kolumny adsorpcyjnej, a następnie złoże przedmuchiwano zimnym strumieniem powietrza (punkt rosy -70° C) przez 10 minut.

Następnie realizowano proces desorpcji: włączano podgrzewacz i przemywano złoże gorącym strumieniem powietrza o maksymalnej temperaturze od 200 do 257°C. Podczas desorpcji rejestrowano temperaturę złoża na różnych wysokościach. Desorbaty skraplano, ważono okresowo i analizowano ich skład. Po zakończeniu desorpcji chłodzono złoże adsorbentu strumieniem chłodnego powietrza. Kierunek przepływu powietrza podczas przedmuchiwania złoża oraz w czasie desorpcji i chłodzenia był przeciwny do kierunku przepływu cieczy w procesie adsorpcji.

Wyniki badań

Badania wykonano dla dwóch związków organicznych o różnej zawartości wody. Jako adsorbent wody stosowano zeolitowe sita molekularne typu 3A (*Aldrich Chemical Co., Inc.*) o granulacji 1/16", charakteryzujące się dobrą pojemnością adsorpcyjną w stosunku do wody. Parametry wykonanych doświadczeń zamieszczone zostały w tab. 1. Dla obu badanych związków organicznych przeprowadzono kilka cykli adsorpcyjnych. W pierwszym cyklu adsorpcja prowadzona była na świeżym adsorbencie.

Wyniki wykonanych badań pozwalają na przeprowadzenie oceny skuteczności regeneracji złoża. Za jej miarę przyjęto czas przebicia złoża wodą w etapie adsorpcji. Wartości czasów przebicia złoża zamieszczono w tab. 1.

Tab. 1. Podstawowe parametry wykonanych badań doświadczalnych

Nr cyklu	C _o kg/kg	G_c kg/m ² s	$ au_p \min$	a _d kg/kg	G_p kg/m ² s	${}^{t_d}_{^{\circ}\mathrm{C}}$	m _w g	m _o g
etanol								
A0	0,147	0,237	72	0,231	0,241	255	215	64
Al	0,097	0,237	70	0,148	0,310	240	211	71
A2	0,095	0,158	124	0,172	0,275	240	119	57
A3	0,064	0,063	455	0,169	0,310	200	166	51
A4	0,035	0,237	174	0,132	0,275	230	93	52
n-propanol								
B1	0,021	0,235	220	0,160	0,275	257	130	229
B2	0,032	0,227	240	0,198	0,310	257	178	197
B3	0,051	0,141	300	0,158	0,241	257	171	195
B4	0,044	0,325	120	0,141	0,310	230	130	170

Przykładowe krzywe wyjścia stężenia i temperatury (dla różnych wysokości złoża) w procesie desorpcji dla obu badanych układów związek organiczny – woda zamieszczono na rys. 1–4. Na krzywych wyjścia temperatury widoczne są dwa obszary plateau, położone pomiędzy strefą czołową i tylną. Początkowy odcinek tylnej strefy ma stromy kształt. Jej nachylenie zmniejsza się znacznie po przekroczeniu temperatury 100°C. Spowodowane jest to wzrostem intensywności desorpcji wody po osiągnieciu tej temperatury. Analiza krzywych wyjścia stężenia (Rys. 2, 4) pokazuje, że dla obu badanych układów związek organiczny-woda w gazie odprowadzanym z kolumny adsorpcyjnej w procesie desorpcji obserwuje się obecność zarówno wody jak i dużych ilości związku organicznego. Jako pierwszy usuwany jest ze złoża związek

INŻYNIERIA I APARATURA CHEMICZNA

Rys. 2. Krzywe wyjścia stężenia w procesie desorpcji dla mieszaniny etanol – woda (cykl A0)

organiczny. Zarówno etanol jak i n-propanol praktycznie nie adsorbują się na sitach molekularnych 3A, gdyż mają one wąskie pory (około $3 \cdot 10^{-10}$ m), w których adsorbowane mogą być jedynie cząsteczki wody (około 2,6 · 10⁻¹⁰ m).

Obecność osuszanych związków organicznych w powietrzu po desorpcji wynika z ich obecności, w postaci cieczy, w przestrzeniach międzyziarnowych oraz w makroporach lepiszcza stosowanego w produkcji granulowanych adsorbentów zeolitowych. Komercyjne adsorbenty formowane są z kryształków zeolitów o średnicy $\sim 1 \ \mu m z$ lepiszczem, którym są zazwyczaj różne gatunki glin [1]. Dodatek czynnika wiążącego wynosi około 20%.

Analiza danych zamieszczonych w tab. 1 pokazuje, że dla układu etanol – woda całkowita masa wykroplonej wody jest od 1,8 do 3,4 razy większa od masy wykroplonego etanolu (cykle A0-A4). W przypadku układu n-propanol-woda we wszystkich cyklach adsorpcyjnych (cykle B1-B4) masa wykroplonego z powietrza po desorpcji n-propanolu przewyższa masę wykroplonej wody.

Uzyskane wyniki badań wskazują na konieczność usuwania ze złoża w procesie desorpcji dużych ilości osuszanego związku organicznego. Może to mieć istotny wpływ na koszt regeneracji złoża. Ponadto istotne znaczenie może mieć konieczność usuwania związków organicznych ze skroplin otrzymanych w procesie desorpcji.

Wnioski

Przeprowadzono badania nad regeneracją sit molekularnych 3A stosowanych do osuszania etanolu oraz n-propanolu w układzie adsorpcyjnym TSA. Proces adsorpcji wody prowadzony był z fazy ciekłej. Zastosowana metoda regeneracji złoża pozwala na prowadzenie procesu osuszania w sposób cykliczny.

Rys. 3. Krzywe wyjścia temperatury w procesie desorpcji dla mieszaniny n-propanol – woda (cykl B2)

Rys. 4. Krzywe wyjścia stężenia w procesie desorpcji dla mieszaniny n-propanol – woda (cykl B2)

Wyniki badań wykazały, że podczas desorpcji ze złoża usuwane są (oprócz wody) znaczne ilości osuszanego związku organicznego, co może mieć istotny wpływ na koszt regeneracji.

Oznaczenia

- a_d dynamiczna pojemność adsorpcyjna złoża w stosunku do wody, [kg/kg]
- C_o stężenie wody w cieczy na włocie do złoża, [kg/kg]
- G_c pozorna gęstość strumienia cieczy w kolumnie adsorpcyjnej, [kg/(m²·s)]
- G_p pozorna gęstość strumienia powietrza w kolumnie adsorpcyjnej, [kg/(m²·s)]
- m_o masa skroplin związku organicznego, [g]
- m_w masa skroplin wody, [g]
- t_d maksymalna temperatura powietrza na włocie do złoża w procesie desorpcji, [°C]
- τ_p czas przebicia złoża wodą w procesie adsorpcji, [min]

LITERATURA

- [1] M. Simo, S. Sivashanmugam, Ch. J. Brown, V. Hlavacek: Ind. Eng. Chem. Res. 48, 9247 (2009).
- [2] B. Sowerby, B.D. Crittenden: Chem. Eng. Res. Des. 69 (A1), 3 (1991).
- [3] S. M. Ben-Shebil: Chem. Eng. J. 74, 197 (1999).
- [4] A. Lau, B. D. Crittenden, R. W. Field: Sep. Purif. Techn. 35, 113 (2004).
- [5] M. J. Carmo, M. G. Adeodato, A. M. Moreira, E. J. S. Parente Jr., R. S. Vieira: Adsorption 10, 211 (2004)
- [6] E. Lalik, R. Mirek, J. Rakoczy, A. Groszek: Catal. Tod. 114, 242 (2006).
- [7] E. Gabruś, D. Downarowicz: Ochrona powietrza w teorii i praktyce, t. 1,
 - s. 75, Instytut Podstaw Inżynierii Środowiska PAN, Zabrze 2010.