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Introduction

The removal of biogenic elements from wastewater, especially
nitrogen and phosphorus compounds, is a crucial point in its treatment.
Sewage directed to an aquatic environment undergoes the natural
biochemical processes of self-purification, which consists of dilution,
adsorption, sedimentation and the proper purification: biochemical
reactions and mineralization. Heterotrophic bacteria and microscopic
fungi are responsible for these changes [10]. Figure | shows the way
in which organic matter is included into detritus food chains.
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Fig. |. Biochemical processes and mineralization of sewage along
detritus food chains [Fijatkowska et al., 2005, 10]

The chemical methods used in wastewater treatment are relatively
expensive and in most cases they are harmful to the environment.
Inrecent years the increase in environmental pollution and the necessity
for the removal of anthropogenic waste has led to the introduction
of biological methods based on naturally occurring processes [21].
Nevertheless, biological wastewater treatment is faster and more
effective than the processes naturally occurring in the environment.
Therefore, activated sludge is used.

Activated sludge as an example of complex bacterial biocenosis

Activated sludge is a flocculated mixture of representatives from
different microbial groups, such as: [11]:

* bacteria (mainly heterotrophic)
* fungi

* algae

* Protozoa

* Metazoa.

Heterotrophic bacteria are the largest group of activated sludge
microorganisms due to the fact that they need a shorter time for
reproduction in comparison with autotrophic bacteria and they find
plenty of nutrients in the sewage. That is the reason why they represent
the first trophic levels in the food chain.

From an ecological point of view, activated sludge is a biocenosis
- the highest level of nature’s organization. Biocenosis consists of
all of the different species populations living in one environment
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Fig. 2. A bioreactor as an artificial ecosystem
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called a biotope. The population is a set of the representatives
of one species [Trojan, 1975]. The biotope for activated sludge is
a biological reactor. A bioreactor with activated sludge biocenosis
is an ecosystem in which the exchange of energy and the flow
of matter occurs (Fig. 2).

Both lab-scale bioreactors and wastewater treatment plants are at
the beginning of wastewater treatment seeded with activated sludge
derived from other already operational technological installations.
This is not a hard and fast rule because after a while activated sludge
will be created naturally. Activated sludge microorganisms can drift
into a bioreactor from outside: air, water or sewage flowing into it.
The primary biocenosis that was seeded in the bioreactor undergoes
modification depending of the type of sewage and the installation
being used [10].

There are two mechanisms that have an influence on the
composition of activated sludge: selection and adaptation. Selection
is based on the elimination of particular species from the system,
while other species are allowed to develop. Such factors as: the level
of nutrients, the occurrence of electron acceptors, temperature,
growth rate, sedimentation and flocculation ability as well as the
presence of free-living microorganisms have an influence on changes
in the composition of activated sludge. Adaptation-this is the process
of adjustment the organism to changing environment conditions, that
occurs independently of the selection [11].

Nitrification and its usage in wastewater treatment

Human activity causes an increase in the production of nitrogen-
rich wastes. These wastes are harmful to the aquatic environment and
that is the reason why they need to be treated effectively [15]. Organic
nitrogen compounds directed to wastewater treatment plants (WWTP)
undergo ammonification into ammonia. This compound is either built
into the bacterial biomass or undergoes nitrification, one of the crucial
processes in the nitrogen cycle in the environment (Fig. 3) [13, 14].
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Fig. 3. Nitrogen cycle in the environment; | - inflow of atmospheric
nitrogen compounds, 2 - nitrogen fixation, 3 - nitrogen assimilation,
4 - ammonification (mineralization), 5 - aerobic ammonia oxidation,
6 — nitrite oxidation, 7 — denitrification, 8 — anaerobic ammonia
oxidation (Anammox process), 9 — ammonia evaporation,
10 - nitrate washing out [23]
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Ammonia has to be treated properly because it is toxic to aquatic life,
it causes eutrophication followed by an increase in the demand for
oxygen in water [9].

Nitrification is an aerobic process that consists of two steps
of oxidation: ammonia to nitrite and nitrite to nitrate. The first step is
called nitritation (equation 1), the second — nitratation (equation 2) [21].

Two nitrification phases are performed by two physiologically
and evolutionarily distinct groups of chemolitoautotrophic bacteria
that use nitrification as an energy source. The first phase nitrifiers
are called ammonia-oxidizing bacteria (AOB), and the second phase
nitrifiers — nitrite oxidizing bacteria (NOB). There is also a group
of chemoorganotrophic bacteria that lead to heterotrophic nitrification,
but the function of this process is as yet unknown [14, 21].

The autotrophic nitrification scheme is as follows:

NH | +150, — ;\-‘():' +2H" +H,0
NO; +0,50, —==4= NO;

AG"=-270 kJ/mol (1)

AG"= -80 kJ/mol (2)

Nitritation is also a two-step process [Bock et al., 1992]. Firstly,
ammonia is changed into hydroxylamine (equation 3). This reaction
is catalyzed by ammonia monooxygenase (Amo) - a labile membrane
protein, consists of few subunits, difficult to isolate and purification.

NH; +0, +2H]—*=~ NH,OH + H,0 AG'=+154kl/mol  (3)

Subsequently, hydroxylamine is oxidized into nitrite
(equation 4). This reaction is catalyzed by a periplasmatic enzyme —
hydroxylamine oxidoreductase (Hao) where the donor of the second
oxygen atom is water [|2]:

NH,OH + H,0

—Hey NO; + HY +4[H]  AG'=-2893 ki/mol  (4)

The factors that have an influence on nitrification are: temperature,
pH, aeration, substrate level and the presence of toxic substances
in the sewage. However, from a practical point of view, the limitation
of nitrification occurs at its first step — ammonia oxidation [11].

Nitrification is performed in WWTP bioreactors that are constantly
mixed and aerated and it seems to be a well known biochemical process.
But the biodiversity of activated sludge bacteria inside these bioreactors,
which contain a wide range of nitrifier species is still unknown to both
technologists and biologists. From the point of the efficiency and
optimization of wastewater treatment processes such studies of the
biodiversity of nitrification are extremely important [25]. Research
performed on bacteria leading to technologically significant processes
reveals new information that is useful not only in wastewater treatment
but also for other branches of biochemistry-based industries.

AOB as a technological and ecological research model

Ammonia oxidation bacteria belong to the chemolitotrophic
microorganisms that use ammonia ions as an energy and electron
source and carbon dioxide as a carbon source in chemosynthesis [20].
They are gram-negative and obligate aerobic, but Bodelier et al. [4]
proved that some species can tolerate a low oxygen level or even
anoxic environments. These microorganisms are ubiquitous in the soil,
fresh and salty water and in WWTP installations.

Nitrifiers play a major role in the nitrogen cycle. However, from
an economical point of view this process can have both a positive and
negative influence. AOB produces greenhouse gases [27] and they
lower the pH in the environment causing rocks and concrete corrosion
[26]. Nevertheless, lower pH can be profitable for the cultivation
of some plants [Beiderbeck et al., 1996]. It was also stated that
nitrification can initiate the cometabolic removal of recalcitrants such
as chlorinated aliphatic hydrocarbons from water or soil [1].

AOB are difficult to cultivate in a laboratory. They grow slowly [22],
have a limited range of distinguishable phenotypic features [6] and are
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sensitive to temperature and pH swings, inhibitors and toxins [13, |7].
Only 25 pure strains of these bacteria are isolated to date [9].

Before the development of molecular tools, Nitrosomonas sp. was
considered to be a classical AOB research model. It was common
knowledge that it was dominant in nitrification installations until
it appeared that more than 95% of bacteria playing a crucial role
inactivatedsludgeare uncultivable. Itisalso known than the effectiveness
of nitrification is directly connected with the biodiversity of nitrifiers, so
molecular approach for bacterial identification is necessary [25].

DNA as the carrier of genetic information

All of the information necessary for cell functioning, growth
and multiplication is located in DNA — deoxyribonucleic acid. This
molecule is a double-stranded, helically coiled polymer, and consists
of monomers called nucleotides. The nucleotide’s backbone is build
of sugar and phosphate groups joined together with ester bonds. Each
nucleotide possesses one of four bases — adenine, thymine, guanine
or cytosine. Nucleotides are located in a DNA particle as its genetic
code in a way that is characteristic for the organism. Double-stranded
DNA is created due to the existence of hydrogen bonds between the
bases — a double bond between adenine and thymine and a triple bond
between guanine and cytosine. These nucleotides are always coupled
and this rule is known in genetics as the base-pairing rule.

The DNA structure can be denatured if the temperature or
the level of the denaturing substance is high enough to break the
hydrogen bonds. The level of energy necessary for DNA double strand
denaturation is called the DNA melting temperature and it depends
on the number of hydrogen bonds in the particular DNA fragment.
DNA can reassociate into the double helix after denaturation when the
temperature or the level of denaturant disappears.

Both the base-pairing rule and differences in the DNA melting
temperature are used for performing analysis using molecular biology
methods. The most common and most useful technique is polymerase
chain reaction (PCR). This method is the basic tool in molecular biology
research and a wide group of other techniques rely on it. In short,
PCR is artificial DNA replication performed in a test tube using the
DNA polymerase as the reaction catalyst. The PCR amplification, the
multiplication of DNA into millions of copies, is performed according
to the base-pairing rule and because of DNA's ability to denature and
reassociate. DNA polymerase is able to amplify a particular fragment
of DNA through the application of PCR primers —short DNA fragments,
which flank the amplified region on both sides. Primers point at the site
of the beginning and the end of the PCR reaction. The scheme of the
PCR method is shown in Figure 4.
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Fig. 4. Polymerase chain reaction (PCR) scheme
Molecular methods as a useful tool for microbiology
Since Koch’s times microbial research were performed on pure

bacterial strains. It was easy to observe biochemical processes in the
test tubes. But due to the science development scientific developments,
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microbiologists are unable to obtain more than 95% bacteria as
pure cultures because it is impossible for these microbes to exist in
an artificial lab environment [18].

In 1985 Pace et al. found an alternative solution for the problems

of bacterial cultivation and since then molecular biology tools have

begun to dominate in microbial laboratories. Owing to molecular

methods it is possible to identify bacteria and the processes they

perform in microbial mixtures and this facilitates biochemical research

that is so important in modern biotechnology.

Molecular biology techniques are fast, sensitive and their results

are repeatable. They can be divided into two groups [7] (Fig. 5):

a) indirect methods (based on PCR amplification),
b) direct methods (without previous amplification).

| Molecular biology techniques in microbiology |
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Fig. 5. Molecular biology methods useful in microbial research

How to monitor biochemical reactions using molecular
biology tools?

In order to monitor any kind of biochemical process performed by

a microorganism at a molecular level it is necessary to find the proper

tool. Knowledge of the enzymes and genes that code it is important

to understand how microorganisms perform a biochemical reaction

and what the effectiveness of the reaction is. As was found, it is not

necessary to know the enzyme’s coding gene sequence in every type

of research. In some cases we can work with universal molecular
markers. Such a molecule should be [16]:

abundant in every cell of the organism being studied

a relatively large molecule

functionally stable

belong to housekeeping genes (genes responsible for basic meta-
bolic reactions)

possess both conservative as well as variable parts in order to per-
form identification research and phylogenetic analysis.

Since the 1980s the 16S rRNA coding gene has become a universal

marker. The 16S rRNA particle builds a smaller subunit of a prokaryotic
ribosome — an organellum responsible for translation (Fig. 6). Some
parts of the molecule are group specific and it is possible to analyze
a particular bacterial community (e. g. nitrifiers) on the basis of its
16S rRNA coding gene sequence.

Smaller subunit 505:

235 rRNA (2904 nucleotides)
58 rRNA (120 nucleotides)
34 proteins

Larger subunit 30S:

A 165 rRNA (1542 nucleotides)
21 proteins

Fig. 6. Prokaryotic ribosome 70S scheme and composition; peptide
site (P) and aminoacyl-tRNA site (A) during translation in a smaller

subunit [5]

A universal marker is appropriate for monitoring a total community

concerning its biodiversity and temporal changes, but for actual
monitoring of a biochemical process, it is better to use enzyme coding

genes. In the case of nitrification the crucial enzyme is an ammonia

monooxygenase (Amo), a labile membrane protein that was mentioned
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previously [8]. The most important part of this enzyme responsible for
ammonia oxidation, is its o subunit, used in the research, due to the fact
that this part of the gene sequence is well known. It is also important
that this part of the Amo gene is structurally stable and that every first
phase nitrifier possesses it.

Summary

Modern biotechnology research clearly shows that most fields

of science are linked. Biology and chemistry are connected more
closely than the others because together they create biochemistry —
the chemistry of living organisms. Scientific development has helped
researchers in creating useful new tools for biochemistry research.
Molecular biology techniques belong to this group. As was described
above microbial metabolism can be easily characterized using
biochemical language. However, biochemical reactions should be
studied bilaterally — chemically and biologically if we want to obtain
a clear and full picture of these processes.
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