PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie kompozytów w mostach wojskowych

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The concept of using FRP in military bridges
Konferencja
Współczesne metody budowy, wzmacniania i przebudowy mostów XIX seminarium
Języki publikacji
PL
Abstrakty
EN
The needs of expeditionary forces involve the use of light-weight, short-span bridges so that their transport by air would be possible. A project is currently being developed in USA aimed at the elaboration of a Composite Army Bridge (CAB) assault bridge and a Modular Composite Bridge - MCB logistic bridge. In 2004 CAB successfully underwent fatigue tests. A 14 m-long, all-composite treadway bridge span was loaded using an MLC 100 vehicle and it withstood 20 000 load cycles. The MCB will be constructed with 7 m of box modules and a 6.5 m access ramp. A 26 m-long and 4 m-wide bridge span is to provide the traffic ability of MLC 65. Furthermore, works on a 10 m-long, MLC 30 composite bridge are also developed in Canada. The paper presents also the American concept of employing a deployable bridge system utilising composite structure. In order to formwork and reinforce the plate, fibre reinforced polymer composites (FRP) were used. The girder structure is made of aluminium pipes forming diamond truss with curved bottom chord. After they are integrated in the structure, the top chord nodes are connected through concrete deck slab cast in-situ. The tests indicated that the use of polymer composites in military bridges and mobile structures are well justified.
Słowa kluczowe
Rocznik
Tom
Strony
133--142
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
autor
  • Wojskowy Instytut Techniki Inżynieryjnej we Wrocławiu
Bibliografia
  • 1. Höglund T., Nilsson L.: Aluminium in Bridge Decks and in a New Military Bridge in Sweden, Structural Engineering International 4/2006, pp. 348-351.
  • 2. Zobel H., Karwowski W.: Kompozyty polimerowe w mostownictwie - pomosty wielowarstwowe. GEOINŻYNIERIA drogi mosty tunele 02/2006 (09). 42-49.
  • 3. Kosmatka J.B., Policelli, F.J.: The Development of the DARPA/SBIR Composite Army Bridge: Phase I Accomplishments. Journal of Advanced Materials, 31(3), 1999, pp. 23-36.
  • 4. STANAG 2021 (EDITION 6) - Military Computation of Bridge, Ferry, Raft and Vehicle Classifications, NSA, Brussels, 7 September 2006.
  • 5. Mosallam A., Abdi F., Miraj R., Wang J.: Virtual Testing and Progressive Failure Analysis of Army Composite Bridge. FRP INTERNATIONAL, The Official Newsletter of the International Institute for FRP in Construction, Volume 3, Issue 2 2006, pp 10-15.
  • 6. Iyer R., Abdi F., Qian Z., Xiaofeng Su. Mosallam A.: Composite Army Bridge under Fatigue Cyclic Loading, Fire and Repair. 3rd International Conference on Advanced Engineered Wood Composites, Bar Harbor, ME, USA, July 10-14, 2005.
  • 7. Abdi F., Qian Z., Mosallam A., Iyer R., Wang J., Logan T.: Composite Army Bridges under Fatigue Cyclic Loading. Structure & Infrastructure Engineering: Maintenance, Management, Life-Cycle, Volume 2, Number 1/March 2006 , pp. 63-73.
  • 8. Abdi F., Qian Z., Miraj R., Mosallam A., Iyer R., Wang J., Logan T.: The Residual Strength of Composite Army Bridge after Fire Exposure. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, 1-4 May 2006.
  • 9. Mosallam A., Russell L., Iyer R.: Experimental and Numerical Study on Thermal Aging and Mechanical Properties of Composite Army Bridge. MSC Software Conference, Huntington Beach, California USA, July 17-19, 2006,
  • 10. Iyer R.: Repair Kit for Composite Bridges using GENOA. Modeling & Simulation SMART CONFERENCE, 8-11 September 2003.
  • 11. Robinson M. J., Kosmatka J. B.: Light-Weight Fiber-Reinforced Polymer Composite Deck Panels for Extreme Applications .ASCE - Journal of Composites for Construction, Vol.12 No. 3 May-June 2008, pp. 344-354.
  • 12. Robinson M. J., Kosmatka J. B.: Development of a Short-Span Fiber-Reinforced Composite Bridge for Emergency Response and Military Applications. Journal of Bridge Engineering © ASCE, July/August 2008, pp. 388-397.
  • 13. Trilateral design and test code for military bridging and gap-crossing equipment. Trilateral Design and Analysis Group of the United States, Germany, and the United Kingdom, January 2005.
  • 14. Wight, R. G., Shyu, C. T., Tanovic, R., Erki, M. A., and Heffernan, P. J.: Short-span deploy able GFRP tapered box beam bridge. Proc., 4th Int. Conf. on Advanced Composite Materials in Bridges and Structures. 2004, pp. 20-23.
  • 15. Wight, R.G., Erki, M.A., Shyu, C.T., Tanovic, R., Heffernan, P.J.: Development of FRP short-span deployable bridge-Experimental results. " Journal of Bridge Engineering © ASCE, July/August 2006, pp. 489-498.
  • 16. Wight, R. G., Erki, M. A., Shyu, C. T., Tanovic, R., and Xie, A. "Design and analysis of a 10-m FRP deployable bridge." Proc., Third International Conference on FRP Composites in Civil Engineering, A. Mirmiran and A. Nanni, eds., International Institute for FRP in Construction, Miami, Florida, 2006, pp. 131-134.
  • 17. Landheir J. C., Dynamic Analysis of a FRP Deployable Box Beam. Master of Applied Science Thesis, Queen's University, Kingston, Ontario, Canada, September, 2008.
  • 18. Hanus, J. P., Bank, L. C., Velazquez, G. I., and Ray, J. C.: Optimized Design and Testing of Prototype Military Bridge System For Rapid In-Theater Construction. Proc., 25th Army Science Conference - Transformational Army Science and Technology, Asst. Sec. of the Army, Orlando, FL.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP2-0008-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.