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Self-regulation of intelligent grinding system

Interrelations at grain deformations 
Self-regulation is based on changes of speed of interrelations, balan-

cing of potentials, reactions to load, transport and stirring movement, 
and relates to states of stresses, changes and consequences of the grin-
ding process. 

The aim of the work is to fi nd a model of plastic strain for free torsion 
at quasi-cutting of grain/granules in respect of previously given princi-
ples of the intelligent grinding system and performance parameters with 
minimum energy – aims of its operation.

In an analysis of the self-regulation of stresses and strains, a system 
of dependencies (eq. (12) in [12] ) may be presented using the following 
matrixes:
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where left and right terms of the equations (12), respectively proportio-
nal, take an identical position.

For example, term ( )y srv v- l  from the second line and the second co-
lumn of the left matrix corresponds in the right matrix to term also loca-
ted in the second line and the second column – ( )y srf f- l  and this term is 
known to be proportional to the fi rst one. It was established that the left 
matrix that consists of components of the stress infl uencing the change 
of shape of the ground grains is called the stress deviator, whereas the 
right matrix – the strain deviator [1, 2, 4].

Therefore, the generalized interrelation between comminution-rela-
ted stress and strain may be symbolically described as follows:

 
D GD2n o=  

(2)

i.e.: the stress deviator is directly proportional to the strain deviator.
Expressions (1a) and (2) are called self-regulation at the change of 

shape of the ground grains (granules) [1, 3, 4].
Invoking the principle of the volume change and using the concepts 

concerning volumetric stress tensor [1, 3], relationship (11) in [12] may 
be presented as follows:

 
A E An o o=  (3)

i.e. the volumetric stress tensor is directly proportional to the volumetric 
strain tensor.

A different formulation is also possible: fi rst invariants of stress and 
strain tensor are proportional to each other, i.e. ET

o
T

v f=
Coeffi cient of cubic elasticity (volumetric modulus of elasticity) is:

 
E E

1 2o n
= -  (4)

at ,0 5"n  approaches infi nity. 
Out of four constants , , ,E G Eon  obviously only two are independent. 

Considering the existence of the described two parameters of the strain 
principles and moduli 

 
Eo and G included in the same, it is logical to 

consider modules Eo and G, physical features of the ground grains, to be 
the basic ones, i.e. independent.

Volumetric modulus of elasticity Eo describes the resistance of the 
material to a volume change without an interrelated change of shape 
(hydrostatic compression). The shear modulus G  (also known as rigi-
dity modulus), on the contrary, describes the desistance of the material 

to the change of its shape, which is not accompanied by an interrelated 
volume change. 

Regulation of comminution loads 

It is assumed that the cross-section of the ground grain is an ellipse 
with semi-axes a and b. Because for in the cross-section profi le, where
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+ = , the function of stresses should equal zero, the following 

form of the function may be assumed:
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Coeffi cient A is calculated on the basis of the condition that inside 
a profi le, we should obtain the following: F 22

V =- . When placing 

function (5) in differential equation F x y
2 22 2 2

2 2

V V V}= - + =-c m  the 
following is obtained [1]: 
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and as a consequence, considering the torsion angle for ends of grains/
granules j , the following is obtained:
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The total steady stress equals:
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and it reaches the highest value at the end of the axis of grain (granules) 
(i.e. for a>b at y = !b):
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M2
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=  (9)

Because elliptical section area is abrX =  and the polar moment of 
inertia for this section:

 ( )J J J ab a b ab a b4 4 4o x y

3 3
2 2r r r= + = + = +

expression (7) may also be presented as follows:
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This formula, generally correct only for the elliptical section, is wide-
ly-used in the grinding practice [4, 9, 11] for the calculation of the twist-
ing moment for a given torsion angle (or vice versa), for any compact 
cross-section of non-concave profi le considering relevant values X  and 
Jo in (10). 

Using Prandtl stress function F x y
2

2 2

}= - + , for elliptical section 

(5) and relationship (6) as (a) for =} {  the following expression was 
obtained:
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Based on expressions that bind interrelated functions {  and }  the 
following is obtained:

 ( )y x f y12
2

2{
}= +#

or
 ( )x y f x22

2
2= +{

{#

When function (b) is differentiated in respect of x and y the following 
is obtained:
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Comparison of (c) and (d) gives ( ) ( )f y f x C1 2= = , so
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The formula of warp/deformation of points in the cross-section takes 
the following form now:

 w l a b
a b xy C
2 2
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=
+

j - +e o

Because the comminution deformation, of one of the points of the 
cross-section, may be assumed (depending on the limit kinematic con-
ditions that do not restrict strains during the torsion of grains), if it is 
assumed that the centre of twist (x = y = 0) is not altered (w = 0), then 
C = 0.

The above analysis gives the fi nal formula of self-regulating move-
ment along z axis, i.e. of the deformation of the section of the ground 
micro grain, as follows:
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In the case of the circular section (a = b) based on formula (11) w = 0, 
i.e. self-regulation of such section does not result in deformation of the 
section.

Using dependence (7) an expression for the deformation of the sec-
tion is presented in a different form, namely:
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Formula (12) indicates that the lateral elliptical section of the grain 
(granules), when twisted, is subject to the comminution deformation, 
assuming the shape of a hyperbolic paraboloid. 

Summary

If the algebraic sum of the grain/granule volume contained between 
the deformed section area and its initial plane is called the comminution 
volume of the section, then this volume equals zero. The volume of 
the comminution deformation equals zero for the torsion of the cross-
section of any shape. The last conclusion concerning self-regulation of 
comminution strains and stresses may also be presented in the following 
analytical form:

 wdF 0
F

=#

The analysis concerned micro grains with the elliptical section held, 
as per [6] at the left end and subject to the twisting moment at the right 
end. It was assumed that the moment is a result of only tangential forces 
distributed in the section as per formulas (8). In a given case, a non-free 
torsion occurs and therefore the model of a deformation of the section 
(12) previously described for a free torsion is not acceptable for a part of 
the ground grains/granules located close to the left end [12].
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Fig.1. Deformation of elliptical section of micro grain (granules) when twisted [1, 9]
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