# Paulina PIANKO-OPRYCH<sup>1</sup>, Tomasz SKAZIAK<sup>2</sup>

e-mail: paulina.pianko@zut.edu.pl

<sup>1</sup> Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska, Wydz. Technologii i Inżynierii Chemicznej, Zachodniopomorski Uniwersytet Technologiczny, Szczecin <sup>2</sup> Przedsiębiorstwo Produkcji Energii Elektrycznej Elektrociepłownia Wałcz, Wałcz

# Komputerowe modelowanie dynamiki (CFD) przepływu mieszaniny gazowej przez retortę

### Wstęp

Wyraźny wzrost wymagań dotyczących jakości koksu, obejmującego jego skład chemiczny, zawartości alkaliów, fosforu, chloru, a także niskiej reaktywności oraz wysokiej wytrzymałości koksu doprowadził do sytuacji, w której przedsiębiorstwa produkcji energii z jednej strony stosują mieszanki wsadowe o coraz większej ilości wysokozmetamorfizowanych węgli koksowych, z drugiej natomiast poszukują nowych rozwiązań aparaturowych, zapewniających pożądane warunki technologiczne procesu koksowania [1]. Zastosowanie węgli wysokozmetamorfizowanych w mieszance wsadowej jest korzystne ze względu na bardzo dobre właściwości koksotwórcze jednak ograniczone z uwagi na fakt, że węgle podczas procesu koksowania generują wysokie ciśnienie rozprężania, które stwarza zagrożenie dla pracujących urządzeń, w istotny sposób skraca ich żywotność i może doprowadzić do zatrzymania pracy instalacji [2].

Celem badań przedstawionych w prezentowanej pracy było oszacowanie rozkładów prędkości i ciśnień wygenerowanych podczas odgazowywania mieszanek węglowych w rozwiązaniu konstrukcyjnym retorty pionowej *Przedsiębiorstwa Produkcji Energii Elektrycznej, Elektrocieplowni Walcz* [3] przy zastosowaniu numerycznej mechaniki płynów (*Computational Fluid Dynamics, CFD*). Cel ten zrealizowano poprzez przeprowadzenie modelowania numerycznego przepływu mieszaniny gazowej przez retortę wykorzystując metodę uśredniania *Reynoldsa* równań *Naviera-Stokesa (Reynolds Averaged Navier-Stokes, RANS*). Analizie poddano wartości ciśnień i prędkości na wylocie z sześciu króćców strefy pośredniej, w której dochodzi do schładzania strumienia gazu gorącego przy użyciu strumienia gazu zimnego podawanego od dołu do retorty w strefie dozowania.

# Model geometryczny rozpatrywanego układu

Analizowanym obiektem była retorta zbudowana z pionowej rury o średnicy D = 3,0 m i długości L = 28,5 m (Rys. 1a), w której na wysokości 5,0 m od podstawy umieszczono skomplikowany układ stożków, pierścieni i rur zdefiniowany jako strefa pośrednia. Model geometryczny rozpatrywanego układu przedstawiono na rys. 1b. Układ ten składał się ze stożka dolnego, w którym znajdowały się dwa króćce wylotowe gazu K<sub>2</sub> i K<sub>3</sub> widoczne na rys. 1c. W odległości 140 mm od dolnego stożka umieszczono odwrócony względem poprzedniego elementu stożek o wysokości 73,4 mm, którego dolna średnica była równa średnicy wewnętrznej retorty, natomiast górna średnica stożka uległa zwężeniu do wartości równej 2,4 m. Kolejnym elementem zbiornika był pierścień o wysokości 0,64 m i średnicy 2,4 m. Na obwodzie pierścienia w odległości, co kąt 60° naprzemiennie umieszczono sześć rur wlotowych o dwóch długościach równych odpowiednio  $l_1 = 715 \text{ mm} (P_1, P_3, P_5)$ oraz  $l_2 = 490 \text{ mm}$  (P<sub>2</sub>, P<sub>4</sub>, P<sub>6</sub>). Pierwsza rura zlokalizowana na obwodzie pierścienia poniżej króćca K1 (Rys. 1c - widok z góry) charakteryzowała się długością  $l_2$ , kolejna rura miała długość  $l_1$ . Średnica rur była jednakowa i wynosiła  $d_p = 244,5$  mm. Rury zostały zakończone w górnej części blaszkami w kształcie półksiężyców. Ostatnim elementem rozpatrywanego układu był ścięty stożek o średnicy dolnej równej

średnicy pierścienia i górnej średnicy równej średnicy wewnętrznej rury pionowej retorty. W odległości 0,53 m od górnej krawędzi stożka górnego zwieńczającego omawiany układ umieszczono króciec wlotowy gorącej mieszaniny gazowej, K<sub>1</sub>, o średnicy d = 0,6 m. Całość została zobrazowana na rys. 1c jako rozwiązanie konstrukcyjne retorty pionowej przewidzianej do użycia przez *Przedsiębiorstwo Produkcji Energii Elektrycznej, Elektrociepłownię Wałcz.* 



Rys. 1. Pionowa retorta: (a) pełna geometria retorty; (b) strefa pośrednia – układ stożków, pierścieni i rur, widok z boku; (c) strefa pośrednia – część stożkowa retorty z sześcioma rurami włotowymi umieszczonymi na obwodzie części pierścieniowej retorty

Zasadniczo w rozpatrywanym układzie można wyróżnić trzy strefy: strefę dozowania, strefę pośrednią (mieszania) i strefę wystudzoną. Pierwsza strefa dozowania zlokalizowana jest na dole pionowej retorty i jest to włot gazu zimnego przez króciec K<sub>4</sub>. Gaz zimny doprowadzany jest do retorty w temperaturze 313 [K] i przy masowym natężeniu przepływu 4500 [kg/h]. Gaz ten opuszcza retortę króćcami K<sub>2</sub> i K<sub>3</sub> w części stożkowej w temperaturze 513 [K]. Ten fragment retorty wchodzi już w skład strefy pośredniej, w której następuje mieszanie strumienia gazu zimnego z mieszaniną gazów gorących doprowadzanych do retorty króćcem K<sub>1</sub>. Temperatura mieszaniny gazu gorącego na włocie do strefy pośredniej wynosi 823 [K]. Po schłodzeniu do temperatury około 443 [K] mieszanina gazowa opuszcza retortę przez króciec K<sub>5</sub> w strefie wystudzonej, obejmującej górną część pionowej rury retorty. Masowe natężenia przepływu gazu gorącego na włocie do króćca K<sub>1</sub> i na wylocie z retorty (króciec K<sub>5</sub>) wynoszą odpowiednio 9000 [kg/h] i 10150 [kg/h]. W skład mieszaniny gazowej (gorącej) wchodzą związki: dwutlenek węgla 13,6%, woda 31,3%, azot 55,1%, reszta to pył węglowy. Udziały objętościowe mieszaniny gazowej zimnej wynoszą odpowiednio  $CO_2 - 19,8\%$  i N<sub>2</sub> – 80,2% [3].

# Warunki modelowania i analiza problemu

Początkowy etap modelowania z użyciem kodów CFD obejmował wygenerowanie siatki numerycznej i zdefiniowanie warunków jednoznaczności. Geometria i siatka numeryczna została zdefiniowana przy użyciu graficznego pakietu oprogramowania *Gambit<sup>TM</sup>* 2.4.6. Na rys. 2 przedstawiono fragment siatki niestrukturalnej zdefiniowanej dla strefy pośredniej (mieszania) retorty.



Rys. 2. Siatka niestrukturalna na odcinku strefy pośredniej retorty pionowej: a) widok z góry, b) widok z boku

Cała siatka obliczeniowa obejmuje w przybliżeniu 686 tysięcy (686 k) komórek. Wygenerowana trójwymiarowa (3D) geometria retorty była zasadniczo zgodna z geometrią zaproponowaną przez Elektrociepłownię Wałcz. Różnica polega na pominięciu 609 otworów o średnicy 10 mm rozmieszczonych w kilku rzędach odpowiednio na powierzchniach rur wlotowych  $(P_1 - P_6)$  i górnego stożka zlokalizowanego w strefie pośredniej retorty. Uwzględnienie otworów w modelowanej geometrii prowadziło do dużej dysproporcji pomiędzy wielkością komórek obliczeniowych tworzonych przy otworach na powierzchni rur wlotowych a komórkami wygenerowanymi poza strefą pośrednią. Poza dysproporcją w rozmiarach komórek, obecność otworów w geometrii powodowała drastyczny wzrost liczby węzłów siatki, wynikający z konieczności umieszczenia wokół każdego otworu, co najmniej kilku węzłów, aby zapewnić możliwość wygenerowania poprawnej siatki obliczeniowej o równomiernych rozmiarach komórek. Oszacowano sumaryczną powierzchnię otworów oraz powierzchnię rur wlotowych i górnego stożka, na których powinny zostać umieszczone otwory. Stwierdzono, że sumaryczna powierzchnia otworów stanowi zaledwie 0,85% całkowitej powierzchni. Uznano zatem, że pominięcie otworów w geometrii nie wpłynie na zniekształcenie rozkładów analizowanych parametrów.

Do modelowanie zastosowano komercyjny pakiet *CFD* o nazwie *Fluent* 6.3.26. Układ rozwiązywanych równań ograniczono do siedmiu równań bilansu różniczkowego: jedno równanie ciągłości dla mieszani-

ny gazowej, równanie energii, po jednym równaniu bilansu pędu w kierunku *x*, *y*, *z* oraz dwa równania standardowego modelu burzliwości k– $\varepsilon$ , uwzględniające warunki przepływu burzliwego [4].

Analizowane zagadnienie uproszczono zakładając, że skład mieszaniny gazów gorących i zimnych jest jednakowy. W obliczeniach zastosowano standardowe wartości parametrów numerycznych, przyjmowanych domyślnie w kodzie *Fluenta*, do których należały: wartości współczynników podrelaksacji, algorytm sprzęgania *SIMPLE* oraz schemat różnicowy pierwszego rzędu pod prąd (the I<sup>st</sup> order upwind). Kryterium zbieżności iteracji numerycznych zostało przyjęte dla znormalizowanej sumy reszt numerycznych ustalonych na poziomie poniżej 10<sup>-5</sup>.

W celu oceny stopnia równomierności rozkładu prędkości gazu przy przepływie mieszaniny gazowej przez rury wlotowe retorty w strefie pośredniej zastosowano współczynnik  $M_k$  opisany równaniem (1):

$$M_k = \frac{1}{A} \int\limits_a \left( \frac{V}{V_a} \right)^2 dA \tag{1}$$

gdzie:

- A pole przekroju poprzecznego na wlocie do rury wlotowej, [m<sup>2</sup>],
- $V_a$  średnia prędkość gazu w przekroju A, [m/s],
- V prędkości gazu [m/s].

Teoretycznie współczynnik  $M_k$  dla idealnego równomiernego rozkładu prędkości mieszaniny gazu w strefie pośredniej retorty powinien wynosić 1,0. Maksymalną dopuszczalną wartością współczynnika równomierności rozkładu,  $M_k$ , jest 1,20 [5]. W przypadku, gdy  $M_k$  przekracza wartość 1,20 wymagana jest korekta w konstrukcji elementów wchodzących w skład części pośredniej retorty.

# Wyniki modelowania

Symulację pierwszą przeprowadzono dla geometrii oryginalnej retorty pracującej w Przedsiębiorstwie Produkcji Energii Elektrycznej, Elektrociepłowni Wałcz. Oryginalna geometria retorty pionowej charakteryzuje się tym, że w strefie pośredniej na obwodzie pierścienia umieszczone są rurki wlotowe mieszaniny gazowej o jednakowej długości równej  $l_2$  = 490 mm. Wyniki zobrazowano w postaci rozkładu średniej prędkości mieszaniny gazowej na płaszczyźnie poziomej w połowie wysokości rur wlotowych w strefie pośredniej retorty na rys. 3a. Łatwo można zaobserwować nierównomierny rozkład prędkości, z tendencją strumienia mieszaniny gazowej do przepływu o dużej prędkości przy wypływie z króćca wlotowego K<sub>1</sub> i utrzymaniem tej tendencji w przypadku przepływu przez rury P<sub>5</sub> i P<sub>6</sub>. Problemem jest tutaj niszczenie zewnętrznej powierzchni pierścieniowej, w którą skierowany jest strumień gorących gazów dozowanych z króćca wlotowego K1, co wiąże się z koniecznością przeprowadzanie dodatkowych remontów aparatury. Zróżnicowanie średniej prędkości gazu w płaszczyźnie poziomej w połowie wysokości rur wlotowych w strefie pośredniej widoczne jest wyraźnie w przestrzeni pomiędzy ścianą retorty a zewnętrzną powierzchnią pierścienia strefy pośredniej szczególnie w obszarze naprzeciwko króćca  $K_1$  pomiędzy rurami  $P_2$  i  $P_3$ , gdzie występują niskie wartości prędkości mieszaniny gazowej. Ponadto wyróżnić tu można dwa obszary o niskich prędkościach, pierwszy zlokalizowany pomiędzy rurą P<sub>5</sub> i P<sub>6</sub> oraz drugi obszar znajdujący się naprzeciwko pomiędzy rurami P<sub>2</sub> i P<sub>3</sub>.

Symulację drugą przeprowadzono dla zmodyfikowanej geometrii retorty pionowej omówionej szczegółowo w punkcie Model geometryczny rozpatrywanego układu, w której na obwodzie pierścienia naprzemiennie umieszczono rury włotowe o długościach  $l_1$  i  $l_2$  (Rys. 3b). Ostatecznie strumień mieszaniny gazowej został skutecznie rozprowadzony w przestrzeni pomiędzy ścianą pionową rury retorty a częścią pierścieniową strefy pośredniej, zmniejszeniu uległy również obszary niskich prędkości pomiędzy rurami włotowymi gazu P<sub>5</sub> i P<sub>6</sub>.

Wskaźnikiem ilościowym określającym równomierność rozkładu prędkości gazu był wskaźnik  $M_k$ , którego wartości dla zmodyfikowanej geometrii retorty zostały podane dla kolejnych rur wlotowych w tab. 1. Dla żadnej rury wlotowej wartość współczynnika  $M_k$  nie przekroczyła wartości dopuszczalnej 1,20. Wartości te są dostatecznie bliskie warto-

## Nr 6/2010

#### INŻYNIERIA I APARATURA CHEMICZNA

str. 13

Tab. 1. Zestawienie wyników obliczeń dla zmodyfikowanej geometrii retorty o naprzemiennej długości rur włotowych mieszaniny gazowej

| Numer rury wlotowej                                                      | 1     | 2     | 3     | 4     | 5     | 6     | Średnia wartość/<br>odchylenie standardowe |
|--------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|--------------------------------------------|
| Współczynnik M <sub>k</sub> równomierności rozkładu                      | 1,07  | 0,91  | 0,91  | 1,03  | 1,09  | 0,99  | 1,0013/0,07                                |
| Objętościowe natężenie przepływu gazu [m <sup>3</sup> ·s <sup>-1</sup> ] | 0,38  | 0,35  | 0,35  | 0,37  | 0,38  | 0,36  | 0,365/0,014                                |
| Średnie ciśnienie [Pa]                                                   | 1796  | 1795  | 1800  | 1796  | 1788  | 1783  | 1793/6,28                                  |
| Spadek ciśnienia [Pa]                                                    | 260,2 | 261,5 | 256,3 | 261,0 | 268,3 | 268,3 | 262,61/4,8                                 |





Rys. 4. Tory strumienia gazu wprowadzonego przez króciec K<sub>1</sub> dla zmodyfikowanej geometrii retorty o naprzemiennej długości rur wlotowych P<sub>1</sub> – P<sub>6</sub> mieszaniny gazowej

Rys. 3. Rozkład średniej prędkości mieszaniny gazowej na płaszczyźnie poziomej w połowie wysokości rur włotowych w strefie pośredniej retorty: (a) oryginalne rozwiązanie konstrukcyjne retorty [3], (b) propozycja modyfikacji geometrii retorty pionowej

ści 1,0, aby uznać przepływ mieszaniny gazowej przez przyjęte rozwiązanie konstrukcyjne retorty z układem sześciu rur włotowych o zmiennej naprzemiennie długości za właściwe, zapewniające równomierny rozkład strumienia gazu i nie wymagające dalszej modyfikacji. Istotne jest jednak, aby wykonanie konstrukcyjne elementów retorty było precyzyjne, albowiem przeprowadzone dodatkowe symulacje numeryczne, w których zawężono o 5% pola przekroju rur włotowych  $P_5$  i  $P_6$  pokazały, że następuje znaczne pogorszenie stopnia równomierności rozkładu prędkości gazu w retorcie.

Porównano także wartości objętościowego natężenia przepływu gazu przez rury wlotowe i stwierdzono, że różnice pomiędzy nimi są niewielkie, co świadczy o równomiernym rozkładzie prędkości mieszaniny gazowej w strefie pośredniej zmodyfikowanej geometrii retorty.

Spadki ciśnień dla kolejnych rur wlotowych zmodyfikowanej geometrii retorty pionowej wyznaczono jako różnicę ciśnień pomiędzy średnim ważonym ciśnieniem odczytanym dla króćca K<sub>1</sub> pomniejszonym o wartość średniego ciśnienia dla rur wlotowych P<sub>1</sub> do P<sub>6</sub>. Średnie wartości ciśnień odczytano przy końcu rur wlotowych dla  $y = 95\% y_{max}$ , gdzie  $y_{max}$  oznacza maksymalną długość rury wlotowej  $l_1$  lub  $l_2$ . Średnie prędkości zostały wyznaczone natomiast na powierzchniach wlotowych do rur wlotowych dla y = 0. Analiza wartości ciśnień na wylocie z rur wlotowych retorty wykazuje niewielkie wahania od wartości średniego ciśnienia (Tab. 1). Największe spadki ciśnienia i wartości prędkości gazu stwierdzono dla rur wlotowych P<sub>5</sub> i P<sub>6</sub>, czyli położonych najbliżej króćca wlotowego gorącej mieszaniny gazowej K<sub>1</sub>, wartości te są jednak mniejsze od wartości uzyskanych w symulacji pierwszej dla oryginalnej geometrii retorty.

Przeprowadzone obliczenia numeryczne pozwoliły także na analizę w czasie torów strumienia gorącego gazu wprowadzonego do retorty przez króciec K<sub>1</sub> (Rys. 4). Wyniki zaprezentowano dla płaszczyzny poziomej położonej w osi rur wlotowych dla zmodyfikowanej geometrii retorty kolejno dla czasu *t* wynoszącego odpowiednio: 0,22; 0,64; 3,23 i 10,25 s. Analiza torów strumienia mieszaniny gazowej w czasie pozwoliła na ocenę szybkości dopływu strumienia gazu do kolejnych rur i zidentyfikowanie obszarów stagnacji, gdzie przepływ gazu jest niewielki. Informacje te są bardzo przydatne pozwalają bowiem na prześledzenie zachowania się układu w zależności od przyjętego rozwiązania konstrukcyjnego aparatu.

# Wnioski

Przeprowadzone obliczenia numeryczne umożliwiły analizę jakościową rozkładów prędkości i ciśnień w wybranych punktach retorty, ocenę ilościową stopnia równomierności rozkładu prędkości gazu oraz oszacowanie wartości spadków ciśnienia na wylocie z rur wlotowych w części pośredniej retorty. Maksymalna wartość współczynnika wyrównania prędkości wyniosła ostatecznie  $M_k = 1,07$  (rura P<sub>1</sub>) i jest to znacznie mniejsza wartość od górnej dopuszczalnej wartości  $M_k = 1,20$ .

Wykorzystanie nowoczesnych narzędzi badawczych w postaci kodu CFD zapewniło szybkie i skuteczne modelowanie kształtu rur włotowych w strefie pośredniej zmodyfikowanej geometrii retorty, dzięki czemu osiągnięto bardziej równomierny rozkład prędkości gazu w retorcie. Zastosowanie numerycznej mechaniki płynów pozwoliło na diagnostykę warunków pracy retorty, dzięki takiemu podejściu możliwe jest bardziej precyzyjne wskazanie parametrów, których zmiana pozwoli na optymalizację i skuteczną pracę retorty.

#### LITERATURA

- [1] A. Rozwadowski: Gospodarka surowcami mineralnymi, 23, nr 2, 49 (2007).
- [2] A. Karcz: Karbo, 7, 261 (2001).
- [3] Rozwiązaniu konstrukcyjne retorty pionowej Przedsiębiorstwo Produkcji Energii Elektrycznej, Elektrociepłownia Wałcz, 2009.
- [4] B. Lauder, D. Spalding: Comp. Meth. App. Mech. & Eng., 3, nr 2, 269 (1974).
- [5] T. Malcher: ElektroFiltry, 14, 3 (2004).