Jacek WOŁKOWIAK, Lidia ZANDER, Malwina BIEGAJ

e-mail: jawol@uwm.edu.pl

Katedra Inżynierii i Aparatury Procesowej, Wydział Nauki o Żywności, Uniwersytet Warmińsko-Mazurski, Olsztyn

Analiza oporów permeacji w procesie mikrofiltracji piwa

(1)

Wstep

Podczas separacji cieczy za pomocą membran mikrofiltracyjnych najważniejszym czynnikiem ograniczającym szybkość procesu są zjawiska blokowania porów membrany i powstawania placka filtracyjnego [1–3]. W przypadkach, kiedy cząstki fazy rozproszonej akumulują się wyłącznie na powierzchni membrany korzysta się z modelu adekwatnego dla filtracji plackowej [4]:

 $\frac{t}{V} = \frac{R_m \eta}{A \Delta P} + \frac{\alpha \eta c_n}{2A^2 \Lambda P} V$

gdzie:

A - powierzchnia membrany

- c_n koncentracja fazy rozproszonej
- R_m opór hydrauliczny membrany
- t czas trwania procesu
- V objętość permeatu
- $\alpha opór właściwy placka filtracyjnego$
- $\eta lepkość permeatu$
- ΔP ciśnienie transmembranowe

W praktyce jednak bardzo często mamy do czynienia z porównywalną wielkością cząstek nadawy i porów w membranie i dochodzi do blokowania porów [4]. Różne mechanizmy blokowania porów membran mikrofiltracyjnych można identyfikować eksperymentalnie na podstawie parametrów równania *Hermia* [5]:

 $\frac{d^2t}{dV^2} = K \left(\frac{dt}{dV}\right)^i$

gdzie:

- K współczynnik oporu
- *i* wskaźnik blokowania porów.

Wartości liczbowe parametrów równania (2) zależą od charakterystyk membrany i rozdzielanego medium oraz mechanizmu blokowania porów. Uważa się, że wykładnik potęgi *i* może zmieniać się w granicach 0 < i < 2, przyjmując wartość i = 0 dla filtracji plackowej, i = 2 dla blokowania całkowitego, i = 1,5 – dla blokowania "standardowego" oraz i = 1 dla blokowania pośredniego [6]. Podczas procesu mikrofiltracji wymienione mechanizmy blokowania mogą występować jednocześnie lub kolejno po sobie, dlatego wyznaczenie wielkości oporu placka α , współczynnika oporu procesu *K* oraz wskaźnika blokowania *i*, charakteryzujących dany proces mikrofiltracyjny wymaga eksperymentalnego określenia zmian szybkości permeacji w czasie procesu i analizy przebiegu krzywych eksperymentalnych.

Celem niniejszej pracy było wyznaczenie wielkości charakteryzujących opory permeacji w procesie mikrofiltracji piwa i ich zastosowanie do przewidywania zmian szybkości permeacji w czasie.

Część eksperymentalna

Separację niefiltrowanego piwa pochodzącego z lokalnego browaru prowadzono w trybie wsadowym (tzw. *dead-end*) na stanowisku doświadczalnym (Rys. 1), stosując membranę nylonową o średnicy 90 mm i nominalnej średnicy porów 0,45 µm. Przeciętna, zastępcza średnica komórki drożdży wynosiła 8 µm, a koncentracja drożdży w nadawie 22600 komórek/mm³. Wielkości te określono metodą mikroskopową. Średnia gęstość nadawy wynosiła $\rho = 1002,6 \text{ kg·m}^{-3}$, a lepkość v = 1,379·10⁻⁶ m²s⁻¹, natomiast permeat charakteryzowały wielkości odpowiednio $\rho = 1001,7 \text{ kg m}^{-3}$ i v = 1,353·10⁻⁶ m²s⁻¹.

Proces prowadzono w temperaturze 20°C przy ciśnieniu transmembranowym 50, 100 i 150 kPa. Przepływ zawiesiny i formowanie war-

Rys. 1. Schemat stanowiska do mikrofiltracji w trybie *dead-end*: *1* – sprężarka powietrza, 2 – filtr powietrza, 3 – zawór, 4 – manometr, 5 – zbiornik sprężonego powietrza, 6 – kolektor sprężonego powietrza, 7 – głowica filtra membranowego, 8 – napęd tłoka, 9 – pompa nadawy, *10* – przetwornik, *11* – odbiór permeatu, *12* – waga, *13* – komputer, *14* – sterownik

stwy osadu na membranie mikrofiltracyjnej wymuszano za pomocą tłoka. Permeat odbierano do zlewki ustawionej na wadze, podłączonej do komputera, za pomocą którego rejestrowano przyrost masy filtratu w czasie.

Wyniki i analiza

Podczas eksperymentów, zgodnie z oczekiwaniem, stwierdzano szybki spadek strumienia permeatu w początkowej fazie procesu i tendencję do jego ustalania się z upływem czasu. Zależność (t/V) = f(V) w całym zakresie zmiennej V nie miała charakteru liniowego, typowego dla filtracji plackowej, co świadczy o istotnym wpływie blokowania porów membrany na szybkość procesu. Przebieg krzywych (t/V) = f(V) był podobny do otrzymanego przez Hwang i wsp. [6] podczas mikrofiltracji układu modelowego. W każdym doświadczeniu występowała krytyczna wartość objętości permeatu V_{kryt} , poniżej której omawiana zależność przebiegała nieliniowo. Współrzędne punktu krytycznego wyznaczono metodą monitorowania wyrazu wolnego wielomianu aproksymującego przebieg zależności (t/V) = f(V) [7]. Dla wartości V mniejszych od V_{kryt} zastosowano aproksymację wielomianami trzeciego, a dla większych drugiego stopnia. Wyniki obliczeń zestawiono w tab. 1. Przebiegi krzywych i wartości liczbowe współczynników wielomianów aproksymujących zależały od ciśnienia filtracji. Im wyższe było ciśnienie transmembranowe, tym wcześniej następowało blokowanie porów membrany.

Tab. 1. Współrzędne punktu krytycznego i współczynniki wielomianów aproksymujących zależność (t/V) = f(V)

Ciśnienie	Punkt krytyczny		V < V _{kryt}			$V > V_{kryt}$	
ΔP	t _{krvt}	Vkryt	$t = aV^3 + bV^2 + cV$			$t = aV^2 + bV$	
[kPa]	[s]	[m ³]	$10^{-14}a$	$10^{-10}b$	$10^{-5}c$	$10^{-10}a$	$10^{-6}b$
50	229,6	0,065	4,41	1,52	6,95	8,53	2,09
100	179,2	0,063	3,12	1,92	2,97	9,34	3,08
150	53,4	0,037	6,58	1,65	0,00	8,59	1,90

W celu określenia zmian wskaźnika blokowania porów *i* z równania (2) w czasie procesu, korzystając z wartości współczynników podanych w tab. 1, obliczono pochodne dt/dV, d^2t/dV^2 oraz d^3t/dV^3 we wszystkich punktach doświadczalnych. Obustronnie zlogarytmowane równanie (2) przyjmuje postać:

(2)

INŻYNIERIA I APARATURA CHEMICZNA

(9)

$$\ln\left(\frac{d^2t}{dV^2}\right) = \ln K + i\ln\left(\frac{dt}{dV}\right) \tag{3}$$

skąd wynika, że dla dowolnego argumentu wartość liczbowa wykładnika potęgi *i* w równaniu *Hermia* (2) jest równa współczynnikowi nachylenia stycznej do krzywej (t/V) = f(V):

$$i = \frac{d\ln\left(\frac{d^2t}{dV^2}\right)}{d\ln\left(\frac{dt}{dV}\right)} = \frac{\frac{d^3t}{dV^3}\frac{dt}{dV}}{\left(\frac{d^2t}{dV^2}\right)^2}$$
(4)

Przebieg zmian obliczonych w ten sposób wartości wskaźnika *i* w przeprowadzonych eksperymentach zilustrowano na rys. 2

Rys. 2. Zmiany wskaźnika blokowania porów i w funkcji objętości permeatu V

W przebiegu każdej krzywej i(V) można wyodrębnić dwa obszary (rys. 2.):

- obszar blokowania porów, charakteryzowany zmiennymi wartościami wskaźnika i > 0;
- 2. obszar przebiegający z powstawaniem placka filtracyjnego, charakteryzowany stałą wartością wskaźnika i = 0. W tej fazie procesu mikrofiltracji piwa współczynnik oporu K jest wielkością stałą, równą parametrowi K_c

$$K_c = \frac{\alpha \eta c_n}{A^2 \Delta P} \tag{5}$$

Wartości parametru K_c i oporu właściwego osadu drożdżowego α , obliczone z równania (5) zestawiono w tab. 2.

Tab. 2. Graniczne wartości współczynnika oporu K_c i opór właściwy α osadu drożdżowego podczas mikrofiltracji piwa

$\Delta P [kPa]$	$K_c \cdot 10^{-11} [\text{s/m}^6]$	$\alpha \cdot 10^{-13} [m/kg]$
50	1,71	2,09
100	1,87	4,59
150	1,70	6,28

Na rys. 2 zaznaczono strzałkami krytyczne wartości objętości permeatu, przy których następuje zmiana mechanizmu kształtowania oporu procesu mikrofiltracji piwa i stabilizacja wartości $K = K_c$. Zastosowanie normalizacji chwilowych wartości współczynnika K w postaci (K/K_c), zaproponowanej w pracy [6], pozwoliło na otrzymanie jednej funkcji wiążącej parametry równania *Hermia* (2) niezależnie od zastosowanego ciśnienia transmembranowego (Rys. 3).

Rys. 3. Zależność znormalizowanego współczynnika oporu (K/K_c) od wskaźnika blokowania porów i podczas mikrofiltracji piwa

Na podkreślenie zasługuje bardzo duży zakres zmian wielkości (K/K_c) , co musi być brane pod uwagę przy projektowaniu instalacji.

Opór właściwy osadu drożdżowego na powierzchni membrany zmieniał się proporcjonalnie do zastosowanego ciśnienia transmembranowego ΔP zgodnie z równaniem regresji ($r^2 = 0.99$)

$$10^{-7}\alpha = 43,014\Delta P$$
 (6)

skąd wynika, że współczynnik ściśliwości osadu, definiowany równaniem [8]:

$$\alpha = \alpha_0 \Delta P^s \tag{7}$$

wynosi s = 1 przy $\alpha_0 = 43,01 \cdot 10^7$ [m·kg⁻¹].

Otrzymane w wyniku obliczeń wartości parametrów równania (2) pozwoliły na przeprowadzenie symulacji przebiegu procesu mikrofiltracji piwa. W tym celu rozwiązano równanie *Hermia* przekształcając je do postaci

$$\frac{dJ}{dt} = -K(i)J(JA)^{2-i} \tag{8}$$

gdzie:

oznacza gęstość strumienia objętości permeatu.

Równanie modelu (7) rozwiązano numerycznie z wykorzystaniem metody *Rungego-Kutty*, stosując krok 0,1 s i warunki brzegowe $V_0 = 0$ oraz $J_0 = \Delta P/(\eta_v R_m)$.

 $J = \frac{dV}{Adt}$

Symulowane zmiany strumienia permeatu podczas procesu ilustruje rys. 4.

Rys. 4. Symulacja zmian szybkości permeacji podczas mikrofiltracji piwa przy ciśnieniu transmembranowym 50 kPa

Wynika stąd, że pory membrany ulegają zablokowaniu w ciągu pierwszych dwóch minut procesu powodując szybki wzrost oporu permeacji.

Wnioski

- Wzrost ciśnienia transmmebranowego w procesie mikrofiltracji prowadzi do szybszego blokowania porów membrany i mniejszej szybkości permeacji;
- 2. Opór właściwy osadu powstającego podczas mikrofiltracji piwa zależy wprost proporcjonalnie od ciśnienia transmembranowego.
- Równanie *Hermia* przekształcone do postaci modelu (7) dobrze oddaje zmiany szybkości strumienia permeatu i pozwala na przewidywanie przebiegu mikrofiltracji piwa.

LITERATURA

- [1] K. Y. Chung, K. M. Chang: J. Ind. Eng. Chem, 7, No 4, 250 (2001).
- [2] A. L. Lim, R. Bai: J. Membr. Sci. 216, 279 (2003).
- [3] C. Rai, P. Rai, G. C. Majumdar, S. De, S. DasGupta: Food Bioproc. Technol., 1935 (2008).
- 4] D. Sąkol, K. Konieczny: Inż. i Ochr. Środ., 6, nr 2, 239 (2003).
- [5] J. Hermia: Trans. Inst. Chem. Eng. 60,183 (1982).
- [6] K. J. Hwang, C. Y. Liao, K.U. Tung: J. Membr. Sci. 287, 287 (2007).
- J. Wołkowiak, L. Zander: VII Seminarium Środowiskowe Młodych Pracowników WNOŻ UWM w Olsztynie i IRZiBŻ PAN O. Olsztyn (2010)
 J. Kocurek, M. Palica:, 2002 (28.06.2009):
 - 3] J. Kocurek, M. Palica:, 2002 (28.06.2009): http://www.wbiis.tu.koszalin.pl/.