Władysław MONIUK, Ryszard POHORECKI, Michał NOSEWICZ, Marta SZCZEPAŃSKA

e-mail: moniuk@ichip.pw.edu.pl

Zakład Biotechnologii i Inżynierii Bioprocesowej, Wydział Inżynierii Chemicznej i Procesowej, Politechnika Warszawska, Warszawa

Badania szybkości absorpcji CO₂ w wodnych roztworach węglanów potasowych z dodatkiem 2-etyloaminoetanolu

Wstęp

Usuwanie CO₂ z gazu syntezowego w procesie produkcji amoniaku najczęściej prowadzi się metodą opatentowaną przez *Bensona* i *Fielda* (proces BENFIELD). W 1973 roku według technologii *Benfield* pracowało na świecie ponad 250 instalacji.

Proces BENFIELD polega na absorpcji CO₂ z gazu skonwertowanego za pomocą roztworu węglanu potasowego z dodatkiem dwuetanoloaminy jako aktywatora i metawanadianu potasowego jako inhibitora korozji. Proces absorpcji przebiega w wypełnionej kolumnie w temperaturze 100–115°C pod ciśnieniem 2,07–2,4 MPa, zaś proces regeneracji rozpuszczalnika (desorpcji CO₂ z roztworu do strumienia pary wodnej) również w wypełnionej kolumnie w temperaturze 100–110°C pod ciśnieniem 0,12 MPa.

W celu intensyfikacji procesu BENFIELD poszukuje się nowych aktywatorów. Celem niniejszej pracy było określenie szybkości absorpcji CO_2 w wodnych roztworach węglanów potasowych z dodatkiem 2-etyloaminoetanolu (EAE).

Absorpcja dwutlenku węgla w wodnych roztworach węglanów zawierających aminy

Podczas absorpcji CO₂ w wodnych roztworach węglanów przebiegają następujące reakcje:

$$\operatorname{CO}_{2(g)} \longleftrightarrow \operatorname{CO}_{2(r)}$$
 (1)

$$CO_{2(r)} + H_2O \leftrightarrow H^+ + HCO_3^-$$
 (2)

$$HCO_3^- \leftrightarrow H^+ + CO_3^{2-}$$
 (3)

$$H^{+} + OH^{-} \longleftrightarrow H_{2}O \tag{4}$$

$$\operatorname{CO}_{2(r)} + \operatorname{OH}^{-} \longleftrightarrow \operatorname{HCO}_{3}^{-}$$
 (5)

Reakcja (1) przedstawia fizyczny proces rozpuszczania gazu w cieczy. Szybkość tego procesu jest o wiele większa niż pozostałych i można przyjąć, iż na powierzchni międzyfazowej panuje równowaga opisana prawem *Henry*'ego.

Reakcja (2) jest w kierunku z lewa na prawo reakcją pierwszego rzędu w stosunku do CO_2 i zerowego rzędu w stosunku do H_2O . Stałą szybkości tej reakcji można wyznaczyć z zależności [1]:

$$\log k_{H_{20}} = -\frac{17265,4}{T} - 110,541\log T + 329,85$$
(6)

Wartość $k_{\text{H}_2\text{O}}$ nie zależy od siły jonowej roztworu. Stałe równowagi reakcji (2) i (3), definiowane jako:

$$K_{1} = \frac{[\mathrm{H}^{+}][\mathrm{CO}_{3}]}{[\mathrm{CO}_{2}]}$$
(7)

$$K_{2} = \frac{[H^{+}][CO_{3}^{2}]}{[HCO_{3}]}$$
(8)

zależą od temperatury i siły jonowej roztworu [2]. Z zależności (7) i (8) otrzymamy:

$$\operatorname{CO}_{2}] = c_{r} = \frac{K_{2}}{K_{1}} \cdot \frac{[\operatorname{HCO}_{3}]}{[\operatorname{CO}_{3}^{2^{*}}]}$$
(9)

Wprowadzając stopień karbonizacji roztworu:

otrzymamy:

$$\alpha = \frac{[\text{HCO}_3]}{2[\text{CO}_3^2] + [\text{HCO}_3]} \tag{10}$$

 $c_{Ar} = \frac{4\alpha^2}{1 - \alpha} \cdot \frac{K_2}{K_1} \left\{ \left[\text{CO}_3^{2^-} \right] + \frac{1}{2} \left[\text{HCO}_3^{-} \right] \right\}$ (11)

Ciśnienie równowagowe CO₂ nad roztworem można wyznaczyć z prawa *Henry'ego* [3]

$$p_{Ar} = \frac{1}{H} c_{Ar} = \frac{4\alpha^2}{1 - \alpha} \cdot \frac{K_2}{K_1 H} \left\{ \left[\text{CO}_3^2 \right] + \frac{1}{2} \left[\text{HCO}_3^2 \right] \right\}$$
(12)

Wyrażenie K_1H/K_2 nazywane jest w literaturze współczynnikiem równowagowym K_p , który może być obliczony z zależności [3]:

$$\ln K_{p} = -3,154 + \frac{2311}{T} - 0,0681I + 0,0138I^{2}$$
(13)

Równowagę reakcji (4) opisuje iloczyn jonowy wody:

$$K_{w} = \left[\mathbf{H}^{+} \right] \left[\mathbf{O} \mathbf{H}^{-} \right] \tag{14}$$

Reakcja (5) jest reakcją II rzędu. Stała szybkości tej reakcji zależy od temperatury, siły jonowej roztworu i rodzaju jonów obecnych w roztworze i może być wyznaczona z zależności [4]:

$$\log \frac{k_{\text{OH}}}{k_{\text{OH}}^{\infty,e}} = \sum_{jon} b_{jon} I_{jon}$$
(15)

$$\log k_{OH}^{\infty,e} = 11,916 - \frac{2382}{T}$$
(16)

Udziały jonowe b_{jon} podane są w pracy [4].

Podczas absorpcji CO_2 w wodnych roztworach węglanów zawierających aminy, oprócz reakcji (1–5), zachodzą dodatkowo jeszcze następujące reakcje:

$$2RR'NH + CO_2 \leftrightarrow RR'NCOO^- + RR'NH_2^+$$
(17)

$$RR'NCOO' + H_2O \leftrightarrow HCO_3 + RR'NH$$
 (18)

Reakcja (17) jest reakcją sumaryczną, składającą się z dwóch etapów:

$$RR'NH + CO_2 \leftrightarrow RR'NCOO' + H^+$$
(19)

$$RR'NH + H^+ \leftrightarrow RR'NH_2^+$$
(20)

Zgodnie z modelem zaproponowanym przez *Shriera* i *Danckwertsa* [5] mechanizm procesu można zilustrować schematem:

faza gazowa powierzchnia międzyfazowa	$\begin{array}{c} \operatorname{CO}_2 \\ \downarrow \end{array}$		
strefa reakcji i dyfuzji	$2\text{RR'NH} + \text{CO}_2$	\rightarrow	$\begin{array}{c} \text{RR'NCOO}^{-} \\ + \\ \text{RR'NH}_{2}^{+} \\ \downarrow \end{array}$
strumień cieczy	$\frac{\text{RR'NH} + \text{HCO}_3}{\text{RR'NH} + \text{H}^+}$		RR'NCOO ⁺ H ₂ O RR'NH ₂ ⁺

Całkowite stężenie wprowadzanej aminy równe jest sumie jej stężeń w formie wolnej, aktywnej (RR' NH) oraz w formach zjonizowanych nieaktywnych (RR' NCOO⁻; RR' NH_2^+):

$$[Am] = [RR'NH] + [RR'NCOO^{-}] + [RR'NH_{2}^{+}]$$
(21)

Pomiary i metodyka obliczeń

Pomiary szybkości absorpcji CO₂ wykonane zostały w laboratoryjnym reaktorze barbotażowym firmy *Autoclave Enginneers* o pojemności 1 dm³. Schemat stanowiska przedstawiono na rys. 1.

Rys. 1. Schemat stanowiska pomiarowego: 1, 2 – butle gazowe; 3, 4 – zawory redukcyjne; 5, 6 – przepływomierze; 7 – reaktor barbotażowy; 8 – bełkotka; 9 – mieszadło; 10 – zawór trójdrożny; 11 – regulator temperatury, ciśnienia i obrotów mieszadła; 12 – analizator CO₂ (DCS, Model 300)

Na początku pomiaru mieszanina gazowa (CO₂ i N₂) z butli gazowych – *1*, *2* poprzez zawory redukcyjne – *3*, *4* i mierniki przepływu gazu – *5*, *6*, kierowana była poprzez zawór trójdrożny – *10* do analizatora gazowego – *12*. W ustalonych warunkach pomiarowych (temperatura, ciśnienie, obroty mieszadła) mieszanina gazowa kierowana była przez zawór trójdrożny – *10* i bełkotkę – *8* pod mieszadło – *9*. Stężenie CO₂ na wylocie z reaktora mierzone było za pomocą analizatora gazowego – *12*.

Pomiary wykonano pod ciśnieniem 4 bary w temperaturze $30-80^{\circ}$ C. Zawartość CO₂ w gazie włotowym wynosiła 40% obj. Obroty mieszadła zmieniano w zakresie 500-700 rpm.

Stężenie węglanów potasowych wynosiło odpowiednio 30% wag., zaś stopień karbonizacji α wynosił 0,4–0,6. Stężenie aminy wynosiło 1 i 3% wag.

Na podstawie pomiarów stężenia CO_2 w gazie wlotowym i wylotowym obliczano szybkość absorpcji CO_2 , *R*. Z drugiej strony szybkość absorpcji można wyrazić równaniem kinetycznym:

$$R = N_{A}a = k_{c}^{*}(c_{A} - c_{A})a$$
(22)

Stężenie CO₂ na powierzchni międzyfazowej wyznaczyć można z prawa *Henry'ego*

$$p_{Ai} = Hc_{Ai} \tag{23}$$

Ciśnienie cząstkowe CO₂ na powierzchni międzyfazowej wyznaczyć można z porównania gęstości strumieni w fazie gazowej i ciekłej

$$N = k_g (p_{Ao} - p_{Ai}) = k_L^* (c_{Ai} - c_{Ar})$$
(24)

W niniejszej pracy wykorzystano wartości fizycznego współczynnika wnikania masy w fazie gazowej dla reaktora barborażowego, podane w pracy [6]. Przyjęto model tłokowego przypływu gazu i jako średnie ciśnienie cząstkowe gazu przyjęto średnią logarytmiczną z ciśnień cząstkowych gazu na wlocie i wylocie reaktora:

$$p_{Ao} = \frac{p_{Ao(inlet)} - p_{Ao(outlet)}}{\ln \frac{p_{Ao(outlet)}}{p_{Ao(outlet)}}}$$
(25)

Pominięto wpływ stężenia aminy (max. 3% wag.) na wartość ciśnienia równowagowego i stężenie równowagowe C_{Ar} obliczano z zależności (11–13). Z zależności (22–25) wyznaczano wartości współczynnika wnikania masy z reakcją chemiczną, k_c^* , a następnie określano współczynnik przyśpieszenia wnikania masy, *E*, z zależności:

$$E = \frac{k_c^*}{k_c} \tag{26}$$

Wartości fizycznego współczynnika wnikania masy w fazie ciekłej, k_{c_i} i powierzchni międzyfazowej zaczerpnięto z wcześniejszych prac autorów [7].

Wyniki i wnioski

Na rys. 2 przedstawiono zależność współczynnika przyśpieszenia od temperatury dla stopnia karbonizacji $\alpha = 0,6$ i dodatku 3% obj. EAE. Dla porównania przedstawiono również wartości *E* dla samych węglanów. Jak widać dodatek 3% wag. EAE znacznie zwiększa szybkości absorpcji (współczynnik przyśpieszenia *E* wzrasta trzykrotnie).

Rys. 2. Zależność współczynnika przyśpieszenia od temperatury

Oznaczenia

- a powierzchnia międzyfazowa odniesiona do jednostki objętości, [m²/m³],
- c_{Ai} stężenie składnika absorbowanego na powierzchni międzyfazowej, [kmol/m³],
- c_{Ar} równowagowe stężenie składnika absorbowanego, [kmol/m³],
- H stała Henry 'ego, [bar·m³/kmol],
- I siła jonowa roztworu, [kmol/m³],
- K_1 stała równowagi reakcji (2), [m³/kmol],
- K_2 stała równowagi reakcji (3), [m³/kmol],
- K_W iloczyn jonowy wody, [kmol/m⁶],
- k_c współczynnik fizycznego wnikania masy w fazie ciekłej, [m/s],
 k_c współczynnik wnikania masy z reakcją chemiczną w fazie ciekłej, [m/s],
- k_g współczynnik wnikania masy w fazie gazowej, [kmol/m²·s·Pa],
- $k_{\rm H_{2}O}$ stała szybkości reakcji (2), [1/s],
- k_{OH} stała szybkości reakcji (5), [m³/kmol·s]
- $k_{OH}^{\infty e}$ ekstrapolowana stała szybkości reakcji (5) w roztworze nieskończenie rozcieńczonym, [m³/kmol·s],
- $K_P = K_1 H/K_2$) współczynnik równowagowy, [kmol/m³·kPa],
- N_A gęstość strumienia molowego, [kmol/m²·s],
- p_{Ai} ciśnienie cząstkowe składnika absorbowanego na powierzchni międzyfazowej, [bar],
- *p_{Ao}* ciśnienie cząstkowe składnika absorbowanego w głębi fazy gazowej, [bar],
- R szybkość absorpcji, [kmol/s],
- T temperatura, [K],
- [] stężenie molowe, [kmol/m³],
- α stopień karbonizacji definiowany zależnością (10).

LITERATURA

- R. Pohorecki: Badania szybkości absorpcji z reakcją chemiczną na półce sitowej. Wydawnictwo PW, Warszawa 1970.
- [2] P.V. Danckwerts, M.M. Sharma: J. Chem. Eng., Review Series No 2, Chem. Eng. CE 244 (1966).
- [3] R. Pohorecki, E. Kucharski: Chem. Eng. J., 46, 1 (1991).
- [4] R. Pohorecki, W. Moniuk: Chem. Eng. Sci., 43, 1677 (1988).
- [5] A.L Shrier, P.V. Danckwerts: Ind. Eng. Chem. Fundam., 8, 415 (1969).
- [6] G.F. Versteeg, P.M.M. Blauwhoff, W.P.M. van Swaaij: Chem. Eng. Sci., 42, 1103 (1987).
- [7] W. Moniuk, R. Pohorecki, A. Zdrójkowski: Prace Wydziału Inżynierii Chemicznej i Procesowej PW, 24, 51 i 91 (1997).