## Anna JACKIEWICZ, Albert PODGÓRSKI

e-mail: a.jackiewicz@ichip.pw.edu.pl

Wydział Inżynierii Chemicznej i Procesowej, Politechnika Warszawska, Warszawa

# Dyspersja masy w niehomogenicznych filtrach włókninowych

### Wstęp

Właściwości filtrów włókninowych są silnie związane z ich strukturą, która jest zwykle niejednorodna, dlatego też modelowanie filtracji przez takie media jest trudne i złożone. Z racji nierównomiernej porowatości oraz polidyspersyjności rozkładu średnic włókien zastosowanie do opisu procesu klasycznej teorii filtracji wgłębnej z wykorzystaniem średnich parametrów strukturalnych prowadzi do drastycznych błędów przy szacowaniu sprawności rzeczywistego filtra włókninowego. W praktyce często stosuje się układy wielowarstwowe, pozwalające zoptymalizować przebieg procesu. W takim przypadku łączna penetracja przez układ wielowarstwowy winna być - wg klasycznej teorii - równa iloczynowi penetracji przez kolejne warstwy. Takie podejście pomija jednak możliwą osiową dyspersję masy w niehomogenicznych filtrach, która może być spowodowana preferencyjnym przepływem aerozolu przez obszary o większej lokalnej porowatości. Dlatego też, ażeby sprawdzić czy wspomniane zjawisko odgrywa znaczącą rolę w filtracji w filtrach włókninowych, zaproponowano interpretację otrzymanych wyników eksperymentalnych za pomocą modelu osiowej dyspersji masy oraz na ich podstawie wyznaczono współczynniki dyspersji osiowej.

#### Model osiowej dyspersji masy

Równanie transportowe dla filtracji cząstek aerozolowych w filtrach włókninowych ma postać:

$$U_{0}\frac{\partial c}{\partial x} - \varepsilon D_{x}\frac{\partial^{2} c}{\partial x^{2}} + \lambda U_{0}c = 0, \qquad (1)$$

gdzie pierwszy człon jest członem konwekcyjnym, drugi reprezentuje osiową dyspersję masy, natomiast ostatni jest równaniem kinetycznym lokalnej szybkości depozycji. W powyższym równaniu *c* jest to chwilowe, lokalne stężenie aerozolu uśrednione w danym przekroju filtra, natomiast *x* oznacza odległość mierzoną od wlotu filtra. Rozwiązanie tego modelu wraz z warunkami brzegowymi *Danckwertsa*:

whot: 
$$U_0 c_0 = U_0 c_{|x=0} - \varepsilon D_x \left(\frac{\partial c}{\partial x}\right)_{|x=0^+}; \quad \text{wylot: } D_x \left(\frac{\partial c}{\partial x}\right)_{|x=L} = 0, \quad (2)$$

prowadzi do następującego wyrażenia na penetrację, *P*, aerozoli przez filtr [1]:

$$\frac{1}{P} = \frac{\left(1 + \sqrt{1 + \frac{4d_F\lambda}{Bo}}\right)^2}{4\sqrt{1 + \frac{4d_F\lambda}{Bo}}} \exp\left[-\left(1 - \sqrt{1 + \frac{4d_F\lambda}{Bo}}\right)\frac{LBo}{2d_F}\right] + \frac{\left(1 - \sqrt{1 + \frac{4d_F\lambda}{Bo}}\right)^2}{4\sqrt{1 + \frac{4d_F\lambda}{Bo}}} \exp\left[-\left(1 + \sqrt{1 + \frac{4d_F\lambda}{Bo}}\right)\frac{LBo}{2d_F}\right]$$
(3)

gdzie liczba *Bodensteina* jest zdefiniowana następująco:  $Bo = U_0 d_F / \varepsilon D_x$ ( $U_0$  – prędkość pozorna powietrza,  $d_F$  – średnica włókna,  $\varepsilon$  – porowatość filtra). Model ten przewiduje – w przeciwieństwie do klasycznej teorii filtracji wgłębnej – niewykładniczy spadek penetracji aerozolu ze wzrostem grubości warstwy filtracyjnej. Zawiera on dwa parametry, współczynnik filtracyjny  $\lambda$ , oraz współczynnik dyspersji osiowej  $D_x$ w filtrze, które wyznaczono na podstawie doświadczeń.

### Doświadczalna weryfikacja modelu

Przetestowano cztery filtry włókninowe o różnych strukturach wykonane z polipropylenu metodą rozdmuchu stopionego polimeru dla kilku prędkości przepływu powietrza z zakresu 0,08–0,2 m/s. Wyznaczono ich pełną charakterystykę strukturalną (średnią średnicę włókna,  $d_{Fa}$ , wraz z odchyleniem standardowym,  $\sigma_{adF}$ , grubość filtra, L, porowatość,  $\varepsilon$ , gęstość powierzchniową,  $q_s$ , współczynnik zmienności,  $CV = \sigma_{adF}/d_{Fa}$ , będący bezwymiarową miarą polidyspersyjności rozkładu wielkości włókien filtra), wyniki zestawiono w tab. 1.

Wyznaczono doświadczalnie penetracje cząstek aerozolowych o rozmiarach 0,2–10 µm wykorzystując zestaw do badania płaskich materiałów filtracyjnych *Palas MFP*-2000. Pomiary przeprowadzono dla układów wielowarstwowych (do 9 warstw) tego samego filtra. Tak otrzymane dane doświadczalne penetracji zinterpretowano za pomocą modelu osiowej dyspersji masy. Dopasowując wartości eksperymentalnych penetracji do równania (3) wyznaczono parametry modelu  $\lambda$  oraz  $D_x$ . We wspomnianym równaniu w miejsce  $d_F$ , wstawiono średnią arytmetyczną średnicę,  $d_{Fa}$ . Porównując przykładowe wyniki dla filtra 1 dla prędkości 0,08 m/s dla dwóch różnych średnic cząstek:  $d_p = 0,61$  µm (Rys. 1a) oraz  $d_p = 1,44$  µm (Rys. 1b) stwierdzono, iż wartość współczynnika dyspersji,  $D_x$ , jest trzy razy większa w przypadku cząstki mniejszej.

Wyznaczone wartości współczynników dyspersji,  $D_x$ , okazały się być kilka rzędów wielkości wyższe od wartości współczynników dyfuzji brownowskiej, D, obliczonych dla tej samej średnicy cząstki według wzoru *Stokesa-Einsteina*:  $D = k_B T C_c / 3\pi \mu_g d_p$ , gdzie  $k_B$  jest stałą *Boltz*manna, T oznacza temperaturę,  $C_c$  jest współczynnikiem *Cunningha*-

Tab. 1. Charakterystyka strukturalna badanych filtrów

| Nr<br>filtra | $d_{Fa} \pm \sigma_{adF} \left[\mu \mathrm{m}\right]$ | <i>L</i> [mm] | ε [%] | $q_s  [{ m g/m}^2]$ | CV[-] |
|--------------|-------------------------------------------------------|---------------|-------|---------------------|-------|
| 1            | 11,9±3,8                                              | 0,77          | 93,2  | 47                  | 0,32  |
| 2            | 15,0±6,2                                              | 1,28          | 84,4  | 182                 | 0,41  |
| 3            | 12,5±7,6                                              | 1,14          | 82,2  | 184                 | 0,61  |
| 4            | 25,4±8,4                                              | 1,37          | 83,6  | 205                 | 0,33  |



Rys. 1. Porównanie doświadczalnych wartości penetracji (punkty) dla jednego z czterech badanych filtrów dla tej samej prędkości przepływu gazu dla różnych średnic cząstek z modelem osiowej dyspersji masy (linia ciągła)

*ma*, zaś  $\mu_g$  lepkością gazu. Zauważono, iż dane eksperymentalne dla układów wielowarstwowych przedstawione na wykresach jako logarytm penetracji w funkcji grubości warstwy filtracyjnej nie układają się wzdłuż linii prostej, jak to powinno mieć miejsce zgodnie z klasyczną teorią filtracji wgłębnej. Ponadto, dane doświadczalne penetracji ekstrapolowane do  $L \rightarrow 0$  nie dążą do 1, co sugeruje nieciągłość stężenia aerozolu w przekroju wlotowym filtra, a co za tym idzie obecność zjawiska dyspersji masy w tychże filtrach. W przypadku każdego z badanych filtrów, dla każdej analizowanej prędkości oraz każdej średnicy cząstki otrzymano bardzo dobrą zgodność danych doświadczalnych penetracji z przewidywaniami modelu osiowej dyspersji masy.

Wyznaczone wartości  $D_x$  dla czterech testowanych filtrów dla różnych prędkości oraz średnic cząstek zebrano na wykresach przedstawiających zależność bezwymiarowej dyspersyjności zdefiniowanej jako stosunek  $D_x/D$  od liczby *Pecleta*,  $Pe = U_0 d_{Fa}/D$ . W celu aproksymowania tej zależności użyto powszechnie stosowanej korelacji:  $D_x/D = A \cdot Pe^m$ . Pomimo, iż rozrzut danych eksperymentalnych jest znaczny wyniki otrzymane dla wszystkich badanych filtrów można było przybliżyć liniową funkcją liczby *Pecleta* (m = 1) – zob. rezultaty uzyskane dla jednego z czterech testowanych filtrów na rys. 2. Sugerują one dominację dyspersji konwekcyjnej w silnie porowatych filtrach włókninowych. Ich niehomogeniczna struktura powoduje efekt tunelowania, tzn. preferencyjny transport aerozolu przez obszary o wyższej lokalnej porowatości.



Rys. 2. Aproksymacja bezwymiarowej dyspersyjności liniową funkcją liczby Pe

Model osiowej dyspersji masy zastosowano również do interpretacji zaczerpniętych z literatury danych dotyczących penetracji nanocząstek przez układy filtrów wykonanych z włókna szklanego [2]. Analizowano układy złożone z n (od 1 do 11) warstw filtra HF0012 o następującej charakterystyce strukturalnej: średnia średnica włókna,  $d_F = 5,4 \,\mu\text{m}$ , grubość filtra,  $L = 0,074 \,\text{cm}$ , porowatość,  $\varepsilon = 96,1\%$ , gęstość powierzchniowa,  $q_s = 69,2 \text{ g/m}^2$ . Pomiary były wykonywane dla prędkości przepływu aerozolu równej 5,3 cm/s za pomocą modularnego zestawu do testowania filtrów TSI 8160. Badano filtrację cząstek NaCl o rozmiarach  $d_n = 29$ ; 47; 90,2; 164,4; 250; 326 nm. Do interpretacji danych doświadczalnych penetracji oprócz modelu osiowej dyspersji masy zastosowano dwie inne metody: a) zakładając jednakową penetrację przez wszystkie warstwy równą penetracji przez warstwę pierwszą,  $P_1$ , co prowadzi do zależności:  $P = P_1^n$ ; b) wykorzystując wykładnicze przybliżenie modelu dyspersyjnego (uzyskane przez pominięcie drugiego członu w równaniu (3)), co daje:  $P = P_s \exp(-\lambda_{eff} L_1 n)$ , w którym parametry  $P_s$  i  $\lambda_{eff}$  obliczono z następujących wzorów:

$$P_{\rm s} = 4\sqrt{1 + 4d_{\rm F}\lambda/Bo} \left/ \left(1 + \sqrt{1 + 4d_{\rm F}\lambda/Bo}\right)^2,\tag{4}$$

$$\lambda_{\text{eff}} = 0.5 \left( \sqrt{1 + 4d_F \lambda/Bo} - 1 \right) Bo/d_F.$$
(5)

Wykazano, iż penetracja mierzona dla układów złożonych z *n* warstw o grubości  $L_1$  każda nie jest równa  $P_1^n$ . Rozbieżność pomiędzy danymi eksperymentalnymi penetracji a tym podejściem jest bardziej istotna dla mniejszych cząstek (Rys. 3a), gdy współczynnik dyspersji masy ma większą wartość, przez co spadek stężenia aerozolu w pobliżu wlotu do pierwszej warstwy ma bardziej gwałtowny charakter, niż ma to miejsce dla cząstek większych (Rys. 3b), gdy dyspersja masy odgrywa mniejszą rolę i obie analizowane metody opisu, tj. model dyspersyjny oraz założenie stałej penetracji dla wszystkich warstw, dają zbliżone rezultaty. Ponadto na rys. 3 naniesiono wyniki obliczeń uzyskanych z wykładniczej aproksymacji modelu dyspersyjnego równaniami (4) i (5), które są



Rys. 3. Trzy metody opisu danych doświadczalnych penetracji dla układów wielowarstwowych (punkty): model osiowej dyspersji masy (linia ciągła); stała penetracja przez wszystkie warstwy (linia przerywana); aproksymacja wykładnicza (linia kropkowana)



Rys. 4. Aproksymacja bezwymiarowej dyspersyjności potęgową funkcją liczby Pe

praktycznie niewidoczne, gdyż pokrywają się z pełnym rozwiązaniem modelu dyspersyjnego.

Stwierdzono, iż bezwymiarowa dyspersyjność rośnie – podobnie jak dla aerozoli submikronowych i mikronowych – ze wzrostem liczby *Pe*, jednakże w przypadku nanoaerozoli zależność ta jest znacznie słabsza od zależności liniowej (Rys. 4).

#### Wnioski

Uzyskane wyniki pokazały, iż model osiowej dyspersji masy jest w stanie bardzo dobrze opisać dane doświadczalne penetracji zarówno cząstek nanometrycznych, jak i submikronowych oraz mikronowych przez układy złożone z wielu warstw tego samego filtra. Po raz pierwszy wyznaczono współczynniki dyspersji w filtrach włókninowych i okazało się, że są one kilka rzędów wielkości wyższe od współczynników dyfuzji brownowskiej dla tej samej średnicy cząstki. Zaproponowano postać korelacji opisującej zależność stosunku obu wymienionych wyżej współczynników od liczby *Pecleta*. Stwierdzono, iż dyspersja masy odgrywa istotną rolę w przypadku filtrów włókninowych, szczególnie tych charakteryzujących się silnie polidyspersyjną strukturą.

#### LITERATURA

- A. Podgórski: Electret Filters, Production and Properties (J. I. T. Stenhouse, L. Gradoń, and J. C. M. Marijnissen, Eds.), pp. 95-106, Delft University Press, 1999.
- [2] D. Japuntich: Proceedings of 22nd Annual Conference of AFS; Bloominghton, USA 2009.