INŻYNIERIA I APARATURA CHEMICZNA

Elżbieta GABRUŚ

e-mail: elzbieta.gabrus@zut.edu.pl

Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska, Wydział Technologii i Inżynierii Chemicznej, Zachodniopomorski Uniwersytet Technologiczny, Szczecin

Analiza wpływu parametrów mikrofiltracji na wydajność procesu separacji związków wielkocząsteczkowych

Wstęp

Niskociśnieniowe procesy membranowe tj. mikrofiltracja i ultrafiltracja są bardzo dobrą alternatywą dla klasycznych procesów separacji roztworów substancji wielkocząsteczkowych w przemyśle spożywczym. Zaletą zastosowania mikrofiltracji jest to, że proces separacji zachodzi w czysto fizyczny sposób, co umożliwia odzyskiwanie i ponowne wykorzystanie składników separowanego roztworu, (np. białka), klarowania, dezynfekcji i sterylizacji roztworów. Przykładem wykorzystania tych procesów może być przemysł browarniczy, mleczarski, przetwórstwa mięsnego czy rybnego.

Do stosowania w przemyśle spożywczym bardzo dobrze nadają się porowate membrany ceramiczne mikrofiltracyjne lub ultrafiltracyjne. Membrany ceramiczne mogą pracować przy dużych natężeniach przepływu nadawy i wysokich ciśnieniach transmembranowych, charakteryzują się dużą wydajnością, wysoką wytrzymałością mechaniczną, odpornością chemiczną i termiczną oraz mogą być poddawane sterylizacji.

Główne problemy procesu mikrofiltracji to *fouling*, polaryzacja stężeniowa, spadek strumienia permeatu oraz wzrost oporów transportu w trakcie trwania procesu separacji związków wielkocząsteczkowych. Podstawową metodą minimalizacji *foulingu* membranowego jest dobór odpowiednich wartości parametrów operacyjnych procesu mikrofiltracji, takich jak ciśnienie transmembranowe i prędkość liniowa nadawy nad powierzchnią membrany. Celem badań była analiza wpływu ciśnienia i prędkości liniowej nadawy na wydajność procesu oraz identyfikacja oporów transportu masy przez membranę ceramiczną dla roztworów związków wielkocząsteczkowych białka i drożdży.

Badania doświadczalne

Badania przeprowadzono w laboratoryjnej instalacji mikrofiltracyjnej *cross-flow*, w skład której wchodziły: zbiornik nadawy, pompa wielostopniowa z płynną regulacją obrotów za pomocą falownika, rurowy moduł membranowy, rotametr, chłodnica przeponowa typu rura w rurze, zbiornik permeatu, zawory, termometry, manometry oraz układ do płukania wstecznego składający się ze zbiornika permeatu, pompy, manometru i zaworów. Zasadniczym elementem aparatury jest stalowy moduł rurowy wyposażony w trójkanałową membranę ceramiczną (firma *TAMI*, Francja) o punkcie odcięcia *cut-off* 0,8 µm, średnicy zewnętrznej 10 mm, długości 25 cm oraz powierzchni filtracyjnej 93,75 cm² [1]. Wielkość strumienia permeatu była rejestrowana w sposób ciągły za pomocą programu komputerowego *DasyLab*, który zastosowano do obróbki danych przesyłanych z wagi elektronicznej (firma *Radwag*, Polska), połączonej złączem RS 232 z komputerem.

Badania przeprowadzono w stałej temperaturze 20°C, dla ciśnień transmembranowych ΔP w zakresie 120–330 kPa i liniowych prędkości przepływu *u* cieczy przez moduł w zakresie 2,73–4,55 m/s. Testom mikrofiltracyjnym na wybranej membranie, poddawano czystą wodę (lepkość $\mu = 1,00\cdot10^{-3}$ Pa·s) oraz roztwory drożdży (producent: *Sigma-Aldrich*) o stężeniu 550 mg/kg (lepkość $\mu = 1,34\cdot10^{-3}$ Pa·s) i białka (producent: *Zakłady Jajczarskie Ovopol*) o stężeniu 200 mg/kg (lepkość $\mu = 1,12\cdot10^{-3}$ Pa·s). Podczas mikrofiltracji oznaczano stężenia substancji rozpuszczonej w nadawie i permeacie za pomocą spektrofotometru *UVmini-1240* (firma *Shimadzu*, Japonia). Po zakończeniu mikrofiltracji roztworów związków wielkocząsteczkowych, każdorazowo wyko-

nywano testy permeacji wody przed czyszczeniem chemicznym i po czyszczeniu chemicznym membrany przy różnych parametrach ΔP i u.

Omówienie wyników

Analiza stężenia substancji rozpuszczonych w nadawie i permeacie wykazała, że cząsteczki drożdży są całkowicie zatrzymywane na wybranej do badań membranie, natomiast stężenie białka było jednakowe po obu stronach membrany. Jednakże dla obu roztworów zaobserwowano spadek strumienia permeatu w czasie. W wyniku przeprowadzonych badań doświadczalnych uzyskano krzywe obrazujące zmienność strumienia permeatu, który po czasie 120 minut osiągał stan pseudoustalony J_s . Do opisu zależności strumienia permeatu od czasu zastosowano model empiryczny [2] przedstawiony równaniem (1):

$$J_v = J_s + \frac{k}{t},\tag{1}$$

gdzie J_v jest strumieniem permeatu w dowolnych momencie czasowym t, J_s jest strumieniem pseudostacjonarnym, k jest stałą opisującą szybkość *foulingu*. Parametry równania (1) obliczono metodą regresji nieliniowej za pomocą programu *Statistica*. Parametry J_s i k z modelu mogą być skorelowane z parametrami procesu.

W tab. 1 zestawiono doświadczalne wartości strumienia permeatu w stanie pseudostacjonarnym J_s oraz wyniki obliczeń J_s i *k* uzyskane z modelu (1). Uzyskano dobrą zgodność wyników obliczeń z rezultatami obliczeń dla obu badanych roztworów (białka i drożdży).

Tab. 1. Wyniki doświadczalnych i obliczeniowych (1) wartości strumienia permeatu w stanie pseudoustalonym

$\Delta P [kPa]$	dośw. $J_s [m^3/m^2s]$	obl. $J_s [m^3/m^2s]$	$k [m^3/m^2]$	$R^{2}[-]$				
białko: $u = 2,73$ m/s								
120	1,11.10-5	1,63.10-5	4,44.10-3	0,903				
220	1,21.10-5	1,38.10-5	4,96.10-3	0,927				
320	1,36.10-5	1,77.10-5	3,90.10-3	0,884				
białko: $u = 3,64$ m/s								
125	1,13.10-5 1,23.10-5		3,25.10-3	0,935				
225	1,16.10-5	1,14.10-5	6,40.10-3	0,956				
325	1,47.10 ⁻⁵ 1,38.10 ⁻⁵		3,71.10-3	0,937				
białko: $u = 4,55$ m/s								
130	1,64.10-5	1,64.10-5 1,86.10-5		0,966				
230	1,87.10 ⁻⁵ 2,02.10 ⁻⁵		5,24.10-3	0,908				
330	2,89.10-5	3,09.10-5	7,30.10-3	0,907				
drożdże: $u = 2,73 \text{ m/s}$								
120	1,23.10-5 1,17.10-5		3,86.10-3	0,933				
220	1,01.10-5	0,995.10-5	6,96·10 ⁻³	0,968				
320	1,37.10-5 1,24.10-5		16,25.10-3	0,976				
drożdże: $u = 3,64$ m/s								
125	2,84.10-5 2,87.10-5		29,11.10-3	0,946				
225	3,36.10-5	3,63.10-5	36,21.10-3	0,950				
325	3,43.10-5	3,56.10-5	41,93.10-3	0,965				
drożdże: $u = 4,55 \text{ m/s}$								
130	3,01.10-5	3,16.10-5	27,82.10-3	0,956				
230	4,55.10-5	4,60.10-5	45,70·10 ⁻³	0,959				
330	4,71.10-5	4,94.10-5	62,96·10 ⁻³	0,957				

Rys. 1. Porównanie doświadczalnych (punkty) i modelowych (linia ciągła) krzywych strumienia permeatu podczas mikrofiltracji roztworów drożdży (x) i białka (o) dla u = 3,64 m/s i $\Delta P = 330$ kPa

Na rys. 1 przedstawiono przykładowe wyniki badań i obliczeń krzywych kinetycznych dla białka i drożdży przy tych samych parametrach procesowych (u = 3,64 m/s i $\Delta P = 330$ kPa). Linia ciągła obliczona została na podstawie modelu (1) i dopasowana do punktów doświadczalnych. Dla roztworu drożdży zaobserwować można większy spadek strumienia permeatu, natomiast w testach z białkiem obserwuje się mniejszą zmienność przepływu, ale ustabilizowaną (J_s) na niższym poziomie przepuszczalności niż dla drożdży.

Zmniejszanie wydajności procesu dla roztworów białka związane jest ze wzrostem oporu membrany, na której osadzały się cząstki rozpuszczone. Pomimo niewielkich rozmiarów cząsteczek białka w stosunku do porów membrany [3], podczas permeacji następował wzrost oporów transportu masy z powodu blokowania membrany ceramicznej przez cząsteczki białka adsorbujące się na ich powierzchni wewnętrznej porów. Na podstawie przeprowadzonej sekwencji badań przepuszczalności membrany podczas mikrofiltracji roztworów białka, obliczono: opór całkowity membrany w stanie pseudoustalonym R_T w testach z roztworami drożdży i białka, opór foulingu odwracalnego R_{FOD} oraz opór foulingu nieodwracalnego R_{FN} określono odpowiednio na podstawie przepuszczalności membrany dla wody przed i po czyszczeniu chemicznym membrany. Wyniki badań dla roztworów białka zestawiono w tab. 2 oraz zilustrowano na rys. 2.

Obliczenia wielkości oporów przeprowadzono w oparciu o model oporów szeregowych [4]:

$$J_{\nu} = \frac{\Delta P}{\mu R_{T}} = \frac{\Delta P}{\mu (R_{M} + R_{FN} + R_{FOD} + R_{RES})}$$
(2)

gdzie μ jest lepkością roztworu, a R_{RES} jest oporem szczątkowym zwiększającym opór czystej membrany, który nie jest usuwany w kolejnych cyklach czyszczenia chemicznego.

Tab. 2. Zależność oporów charakteryzujących badany układ od prędkości liniowej i ciśnienia transmembranowego

$\Delta P [kPa]$	$R_T[1/m]$	R_{FN} [1/m]	R_{FOD} [1/m]	R_{RES} [1/m]	$R_{RES}/R_M[-]$		
białko: $u = 2,73$ m/s							
115	1,08.1013	6,14·10 ¹²	7,11·10 ¹¹	3,39·10 ¹²	6,11		
215	$1,82 \cdot 10^{13}$	9,52·10 ¹²	4,59·10 ¹²	3,43·10 ¹²	5,48		
310	2,35·10 ¹³	$1,28 \cdot 10^{13}$	6,58·10 ¹²	$3,59 \cdot 10^{12}$	6,77		
białko: $u = 3,64$ m/s							
120	1,11.1013	5,75·10 ¹²	$2,50 \cdot 10^{12}$	2,25·10 ¹²	3,99		
220	1,93.1013	8,44·10 ¹²	8,09·10 ¹²	2,17·10 ¹²	3,43		
320	2,21.1013	7,41·10 ¹²	1,18.1013	2,44·10 ¹²	4,80		
białko: $u = 4,55$ m/s							
125	7,91·10 ¹²	5,16·10 ¹²	8,09·10 ¹¹	1,38.1012	4,80		
225	1,23.1013	6,73·10 ¹²	3,56·10 ¹²	1,46.1012	4,80		
325	1,14.1013	6,09·10 ¹²	3,25·10 ¹²	1,63.1012	4,80		

Rys. 2. Opory membrany w różnych etapach pracy instalacji podczas mikrofiltracji białka w zależności ciśnienia transmembranowego (*u* = 2,73 m/s)

Podsumowanie i wnioski

Na podstawie doświadczalnych badań mikrofiltracji *cross-flow* roztworów drożdży i białka prowadzonych na membranie ceramicznej, (*cut-off* 0,8 µm) można stwierdzić, że strumień permeatu J_v zmniejsza się w czasie dla obu roztworów. Zastosowany do opisu doświadczalnych krzywych dwuparametryczny model (1) pozwala uzyskać dobre dopasowanie. Wartości strumienia pseudostacjonarnego J_s , obliczone z modelu (1) porównano z doświadczalnymi (Tab. 1) i dla białka różnica ta wynosiła 2-32%, a dla drożdży 1–10%. Drugi parametr *k* z równania (1) przyjmuje wartości kilkakrotnie wyższe dla testów roztworów drożdży niż dla białka, co świadczy o większej szybkości powstawania foulingu. Wyższe wartości *k* sugerują wyższą szybkość początkową *foulingu* [2]. Wartości obydwu parametrów, J_s i *k*, rosną ze wzrostem prędkości linowej nadawy *u* i ciśnienia transmembranowego ΔP .

Serie badań przepuszczalności membrany w testach czystej wody, roztworów białka, wody na zanieczyszczonej membranie przed czyszczeniem chemicznym i zregenerowanej po czyszczeniu chemicznym, pozwoliły na określenie wielkości i rodzaju *foulingu* (Rys. 2). Obliczono opory (Tab. 2): czystej membrany R_M , całkowity R_T , *foulingu* nieodwracalnego R_{FN} , *foulingu* odwracalnego R_{FOD} oraz opór resztkowy R_{RES} , który jest dodatkowym oporem membrany, którego nie można usunąć podczas czyszczenia membrany *in situ*. Stwierdzono, że membrana po czyszczeniu chemicznym ma opór kilkakrotnie większy niż nowa, co świadczy o występowaniu oporu szczątkowego R_{RES} .

Analiza wyników badań i obliczeń wskazuje na odwracalny charakter foulingu w mikrofiltracji roztworów drożdży [5]. Badania mikrofiltracji, przeprowadzone na tej samej membranie i w tych samych warunkach procesowych, dla roztworów białka, wskazują na jego silne oddziaływanie z membraną i nieodwracalny charakter foulingu [3]. W całkowitym oporze transportu masy R_T podczas mikrofiltracji roztworów białka, udział foulingu nieodwracalnego R_{FN} stanowi 34–65%, fouling odwracalny R_{FOD} 7–53%, a opór resztkowy R_{RES} 11–20%. Wartości oporów R_T i R_{FOD} rosną ze wzrostem ciśnienia ΔP i prędkości liniowej u, natomiast opór foulingu nieodwracalnego R_{FN} rośnie przy najniższej ze stosowanych prędkości (u = 2,73 m/s), ale dla wyższych prędkości, ciśnienie nie ma praktycznie wpływu jego wartość.

LITERATURA

- [1] E. Gabruś, D. Szaniawska: Przem. Chem. 87, nr 5, 444 (2008).
- [2] N. Singh, M. Cheryan: J. Membr. Sci. 135, 195 (1997).
- [3] E. Gabruś: Inż. Ap. Chem. 48, nr 5, 30 (2009).
- [4] K.J. Hwang, H.C. Hwang: Sep. Pur. Techn. 51, 416 (2006).
- [5] E. Gabruś, D. Szaniawska: Desalination, 240, 46 (2009).