Włodzimierz CIESIELCZYK, Janusz IWANOWSKI, Anita KAMIŃSKA

e-mail: wlodek@indy.chemia.pk.edu.pl

Katedra Reaktorów Chemicznych I Kinetyki Ruchu Masy, Wydział Inżynierii I Technologii Chemicznej, Politechnika Krakowska, Kraków

Powiększanie skali suszenia fluidalnego w oparciu o koncepcję uogólnionej krzywej kinetycznej

Wstęp

Proces suszenia występuje w większości branż produkcji przemysłowej i ma zwykle decydujący wpływ na jakość otrzymywanych produktów. Jednocześnie jest to proces wymagający wysokich nakładów energetycznych i emitujący duże ilości gazów cieplarnianych [1, 2], co wymusza wręcz działania innowacyjne w kierunku doskonalenia obliczeń procesowych.

Suszenie w układach fluidalnych zajmuje ważną pozycję wśród nowoczesnych metod suszarniczych. Jest to metoda łatwa w realizacji, cechująca się korzystnymi wskaźnikami techniczno – ekonomicznymi [3]. Pomimo intensywnych prac doświadczalnych i teoretycznych, istotne problemy jednoznaczności i uniwersalności metod obliczeniowych stosowanych przy projektowaniu procesowym suszenia w układach fluidalnych nie zostały do końca rozwiązane. Szereg zależności dotyczących kinetyki suszenia w układach fluidalnych – spotykanych w literaturze – jest rozbieżnych, a nawet sprzecznych [1–4, 6]. Dlatego też równolegle z dalszym rozwojem prac teoretycznych prowadzi się intensywne działania w kierunku unowocześnienia i normalizacji metod półempirycznych łączących eksperyment wykonany na danym urządzeniu z prostym modelem teoretycznym.

Propozycja utylitarnej metody określenia kinetyki procesu, przy założeniu minimalizacji zakresu niezbędnych badań eksperymentalnych jest przedmiotem opracowania.

Idea uogólnionej krzywej suszenia

Najpewniejsze dane odnośnie kinetyki procesu suszenia fluidalnego otrzymuje się z analizy wyników eksperymentów prowadzonych w warunkach maksymalnie zbliżonych do projektowanych [2, 3]. Badania takie są z reguły czasochłonne i drogie.

Dla projektanta aparatury suszarniczej niezbędna jest znajomość zależności średniej zawartości wilgoci w materiale suszonym od czasu trwania procesu X = f(t), ponieważ rosnące wymagania dotyczące jakości produktu zobowiązują do dokładnej analizy krzywych suszenia.

Uogólnioną krzywą suszenia można przedstawić w bezwymiarowym układzie współrzędnych [4, 5, 7] $(X/X_0) = f[(Nt)/X_0]$ (stosunek zawartości wilgoci bieżącej do zawartości wilgoci początkowej w funkcji stosunku iloczynu stałej szybkości suszenia w pierwszym okresie i czasu suszenia do początkowej zawartości wilgoci). Omawiany problem wiąże się ściśle z ważnym i aktualnym zagadnieniem powiększania skali suszarek fluidyzacyjnych [1–3, 6, 8].

Jeżeli znana jest uogólniona krzywa suszenia przedstawiona w bezwymiarowym układzie współrzędnych to można sporządzić krzywą kinetyczną X = f(t) dla warunków projektowanych w skali przemysłowej. Charakteryzowane podejście pozwala na znaczne ograniczenie liczby doświadczeń weryfikacyjnych, gdyż w granicznym przypadku dla otrzymania tej krzywej wystarczy jeden eksperyment przy określonych, dostępnych w danym laboratorium, parametrach procesowych suszenia. Przez jeden eksperyment należy rozumieć wyznaczenie pojedynczej krzywej suszenia.

W literaturze [1, 8] spotyka się także pojęcie charakterystycznej (znormalizowanej) krzywej kinetycznej. Stosowanie tej metody wymaga jednak znajomości większej liczby parametrów procesowych (np. wartości zawartości wilgoci krytycznej i równowagowej).

Zastosowanie metody uogólnionej krzywej kinetycznej w praktyce wymaga znajomości wartości szybkości suszenia N w pierwszym okresie procesu [4, 5, 7]. Przyjmując, że ciepło doprowadzone do powierzchni granulki zużywane jest w całości na odparowanie wilgoci, odparowanie zachodzi tylko na zewnętrznej, całkowicie pokrytej wilgocią powierzchni materiału, temperatura materiału jest stała i równa temperaturze mokrego termometru, odpowiadającej parametrom czynnika suszącego otrzymuje się równanie (1) z którego można obliczyć charakterystyczną dla pierwszego okresu szybkość suszenia *N*.

$$N = \frac{6\alpha \Delta T \Psi}{r d_z \rho_z} \tag{1}$$

gdzie:

 α – współczynnik międzyfazowej wymiany ciepła,

- ΔT różnica temperatur,
- Ψ współczynnik kształtu,

r – ciepło parowania,

- d_z średnica zastępcza cząstki,
- ρ_z gęstość ciała stałego.

Wielkość tę można obliczyć dla suszenia fluidalnego w oparciu o znajomość współczynników międzyfazowej wymiany ciepła α stosując zmodyfikowany model złoża pęcherzykowego *Kunii-Levenspiela* [3, 4]. Należy podkreślić, że procedury – opracowanego przez autorów pracy – modelu matematycznego kinetyki okresowego suszenia ziarnistych ciał stałych w pęcherzykowym złożu fluidalnym pozwalają [5, 7] na otrzymanie równania uogólnionej krzywej suszenia. W ten sposób tworzy się więź między analitycznymi i półempirycznymi metodami suszenia w układach fluidalnych.

Koncepcję uogólnionej krzywej suszenia wykorzystano przy projektowaniu fluidyzacyjnej suszarki przemysłowej dla siarczanu amonu [9].

Badania eksperymentalne

Doświadczenia mające na celu wyznaczenie krzywych suszenia dla analizowanych materiałów przeprowadzono z wykorzystaniem konwencjonalnej, laboratoryjnej suszarki komorowej, suszarki mikrofalowej oraz termowagi (RADWAG WPS 30S).

Badania weryfikacyjne prowadzono na stanowisku badawczym, składającym się z okresowej suszarki fluidyzacyjnej o średnicy 225 mm [4, 5].

Oprzyrządowanie instalacji badawczych umożliwia uzyskanie danych do sporządzenia krzywych suszenia. W suszarce komorowej umieszczano odpowiednią dla danego materiału badawczego ilość naczyniek wagowych wypełnionych wilgotnym materiałem. Co określony – dla danej substancji – czas oznaczano zawartość wilgoci w kolejnych naczyńkach susząc materiał do stałej masy. Stanowisko do suszenia mikrofalowego przedstawiono na rysunku 1. Komora suszarki mikrofalowej (9) wyposażona jest w generator mikrofal o mocy 700 W. Wewnątrz komory suszenia zainstalowano szalkę ze szkła żaroodpornego (3) na której umieszczano próbkę analizowanego materiału. Szalka sprzężona jest z wagą elektroniczną (1), co umożliwiało ciągły pomiar zmiany masy.

Badaniami objęto; silikażel (frakcje: $3,39\cdot10^{-4}$, $6,71\cdot10^{-4}$, $7,10\cdot10^{-4}$ m), piasek (frakcje: $6,71\cdot10^{-4}$, $3,39\cdot10^{-4}$ m), siarczan amonu (frakcje: $3,39\cdot10^{-4}$, $5,00\cdot10^{-4}$ m), fosforan paszowy (frakcja $6,71\cdot10^{-4}$ m) oraz ziarna maku (frakcja $5,00\cdot10^{-4}$ m). Testowane substancje zalicza się do grupy B klasyfikacji *Geldarta* [1, 3].

Na podstawie danych eksperymentalnych uzyskanych w suszrkach: komorowej, mikrofalowej i z zastosowaniem termowagi sporządzono krzywe suszenia. Wykresy te posłużyły do konstrukcji uogólnionych krzywych kinetycznych w bezwymiarowym układzie współrzędnych 1.0

0.6

0.4

0.2

0.0 L

X/X

a) 0.8

1.6

Rys. 1. Instalacja do badania kinetyki suszenia mikrofalowego: *I* – waga elektroniczna, *2* – magnetron, *3* – szałka wagi, *4* – watomierz, *5* – zasilacz, *6* – rotametr, *7* – termopary, *8* – termometr, *9* – komora suszarki, *10* – zawór, *11* – wężownica

(rys. 2). Szybkości suszenia w pierwszym okresie N określano w tych przypadkach z krzywych suszenia [1, 5].

W kolejnej fazie pracy wyznaczono wartość N dla suszenia fluidalnego w warunkach przewidywanych (projektowanych) w oparciu o wyrażenie (1) przy określeniu α z zastosowaniem modelu złoża pęcherzykowego [4, 5].

Realizując jeden z etapów kompleksowej anlizy teoretycznodoświadczalnej zagadnienia założono, że warunki projektowane dla suszenia fluidalnego wynoszą: temperatura czynnika suszącego na wlocie 323 K, wysokość początkowa warstwy materiału 0,15 m, prędkość powietrza 0,3 m/s, początkowa zawartość wilgoci 0,27 kg/kg. Równolegle prowadzono badania testowe na stanowisku wyposażonym w suszarkę fluidyzacyjną.

Dysponując obliczonymi wartościami N [4, 5] i uogólnionymi krzywymi suszenia dla analizowanych materiałów otrzymanymi w suszarkach: komorowej, mikrofalowej i z zastosowaniem termowagi konstruowano krzywą suszenia dla suszarki fluidalnej (projektowanej). Na rys. 3 zaprezentowano krzywą suszenia fluidalnego maku (linia ciągła) otrzymaną w oparciu o dane eksperymentalne z suszarki fluidyzacyjnej oraz krzywe kinetyczne wynikające z zastosowania opisywanej metodyki i wykorzystanie uogólnionych krzywych suszenia maku innymi metodami (symbole graficzne).

Należy podkreślić, że maksymalny błąd względny między danymi teoretycznymi, a eksperymentalnymi dla wszystkich badań testowych, nie przekraczał 18%.

Podsumowanie

Koncepcja uogólnienia krzywych suszenia wykorzystująca stosowaną często w inżynierii procesowej metodę zmiany układu współrzędnych pozwala na otrzymanie krzywej suszenia fluidalnego danego materiału w warunkach projektowanych przy minimalizacji zakresu niezbędnych badań eksperymentalnych. Według tej metody w granicznych przypadkach uogólnioną krzywą kinetyczną w bezwymiarowym układzie współrzędnych można uzyskać na podstawie eksperymentu

Rys. 3. Krzywa suszenia fluidalnego dla maku w warunkach projektowanych (linia ciągła). Symbole graficzne przedstawiają dane w oparciu o suszenie komorowe, mikrofalowe i uzyskane z termowagi

Rys. 2. Uogólniona krzywa suszenia dla maku wg danych uzyskanych z suszarki mikrofalowej (a) oraz suszarki komorowej (b)

Rys. 4. Uogólniona krzywa suszenia dla kukurydzy [10]; t_m – czas suszenia do pewnej, określonej różnicy zawartości wilgoci dla różnych warunków prowadzenia procesu

realizowanego w dostępnych w danym laboratorium warunkach procesowych. Należy podkreślić, że uzasadnieniem dla stosowania metod półempirycznych w procedurach projektowych jest często niedostępność danych równowagowych (izoterm desorpcji) i szeregu współczynników przenoszenia (np. zastępczego współczynnika dyfuzji w ciele suszonym) dla substancji występujących w praktyce przemysłowej. Wiadomo także, że eksperymentalne dane kinetyczne otrzymuje się łatwiej niż dane doświadczalne dotyczące współczynników przenoszenia, a jednocześnie uwzględnia się rzeczywiste charakterystyki fizykochemiczne, strukturalno-mechaniczne i inne, trudne do ilościowego ujęcia cechy dotyczące materiałów suszonych. Uzyskane wyniki zachęcają do kontynuowania prac obejmujących szeroki zakres wartości parametrów procesowych zarówno w odniesieniu do metod i warunków suszenia, jak i rodzaju materiałów suszonych.

Przedstawiona metoda określenia kinetyki suszenia okresowego może być w pełni rekomendowana dla substancji zaliczanych do grupy B klasyfikacji *Geldarta*.

Modyfikacja omawianej metody [6, 10] obejmuje także przypadki, gdy suszenie przebiega wyłącznie w drugim okresie procesu (Rys. 4).

LITERATURA

- [1] A. S. Mujumdar: Handbook of industrial drying. Marcel Dekker, New York 1995.
- [2] Cz. Strumiłło: Drying Technology. 24, 9, 1959 (2006).
- [3] D. Kunii, O. Levenspiel: Fluidization engineering. Butterworth-Heinemann, Boston 1991.
- [4] W. Ciesielczyk: Przemysł Chemiczny. 84, 4, 273 (2005).
- [5] W. Ciesielczyk: Drying Technology. 23, 8, 1613 (2005).
- [6] L. Genskov (Ed.): Drying Technology. 12, 1&2, 1 (1994).
- [7] W. Ciesielczyk, J. Iwanowski: Proceedings 12th Polish Drying Symposium. Lodz, Poland, 147 (2009).
- [8] I.C. Kemp: Proceedings 15th International Drying Symposium(IDS 2006) Budapest, Hungary, 508 (2006).
- [9] W. Ciesielczyk, J. Szymczak, J. Wais, A. Wolff: Inż. Ap. Chem. 44, nr 6, 3 (2005).
- [10] M. Vukić, M. Stojiljković, G. Ilić, W. Ciesielczyk: Inż. Ap. Chem. 37, nr 4, 12 (1998).