PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przegląd technologii otrzymywania węglowodorów syntetycznych z biomasy

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Review of technologies of synthetic hydrocarbons production from biomass
Języki publikacji
PL
Abstrakty
PL
W artykule dokonano przeglądu aktualnego stanu wiedzy na temat istniejących i najbardziej rozpowszechnionych metod uzyskiwania węglowodorów syntetycznych. Surowcem wyjściowym do ich produkcji jest biomasa, w tym biomasa odpadowa. Omówiono główne kierunki jej konwersji do węglowodorów: przez zgazowanie, upłynnianie biomasy np. przez jej pirolizę oraz hydroodtlenianie tłuszczy.
EN
This paper presents a short review of existing knowledge about the most popular methods of production of synthetic hydrocarbons. The raw material for these processes is a biomass as well as waste biomass. There has been briefly discussed the main directions of a biomass conversion to hydrocarbons such as: gasification, liquefaction of biomass by pyrolysis, and hydrodeoxidation of fats.
Czasopismo
Rocznik
Strony
344--349
Opis fizyczny
Bibliogr. 55 poz., 2 rys.
Twórcy
  • Instytut Paliw i Energii Odnawialnej, Warszawa
Bibliografia
  • 1. Hubbert M.K.: Energy from fossil fuels. Science 1949, 109, 103-109.
  • 2. Hubbert M.K.: Nuclear energy and the fossil fuels. Spring Meeting of the Southern District Division of Production, American Petroleum Institute, San Antonio, Texas, March 7-9, 1956.
  • 3. Duncan R.C.: Evolution, technology, and the natural environment: A unified theory of human history. Proceedings of the Annual Meeting, American Society of Engineering Educators: Science, Technology, & Society, 1989, I4BI-II to I4BI-20.
  • 4. Smeets E.M.W. et al.: A bottom-up assessment and review of global bio-energy potentials to 2050. Progress in Energy and Combustion Science 2007, 33, 56-106.
  • 5. [5] Hoogwijk M. et al.: Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass and Bioenergy 2005, 29, 225-257.
  • 6. Rokityanskiy D. et al.: Geographically explicit global modeling of land-use change, carbon sequestration, and biomass supply. Technological Forecasting & Social Change 2007, 74, 1057-1082.
  • 7. Faaji A.: Modern Biomass Conversion Technologies. Mitigation and Adaptation Strategies for Global Change 2006, 11, 343-375.
  • 8.Rantanen L. et al.: NExBTL - Biodiesel fuel of the second generation. SAE Technical Paper 2005-01-3771, 2005.
  • 9. Kalnes T. et al.: Life Cycle Assessments for Green Diesel Production. The World Congress on Biotechnology & Bioprocessing, April 27-30, 2008, Chicago, Illinois, Prezentacja.
  • 10. Renewable Diesel Technology, Renewable Diesel Subcommittee of the WSDA Technical Work Group. Materiały The Washington State Department of Agriculture. agr.wa.gov/bioenergy/docs/RenewableDieselWhitePaperFINAL. pdf (12.04.2010)
  • 11. Huber G.W., et al.: Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysis and Engineering. Chemical Review 2006, 106, 4044-4098.
  • 12. Speight J.G.: Synthetic Fuels Handbook. Properties, Process, and Performance. Mc Graw Hill 2008.
  • 13. McKendry P: Review paper. Energy production from biomass (part I): overview of biomass. Bioresource Technology 2002, 83, 37-46.
  • 14. Mohan D. et al.: Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy & Fuels 2006, 20, 848-889.
  • 15. McKendry P: Review paper. Energy production from biomass (part 3): gasification technologies. Bioresource Technology 2002, 83, 55-63.
  • 16. Matsumura Y. et al.: Review. Biomass gasification in near- and super-critical water: Status and prospects. Biomass and Bioenergy 2005, 29, 269-292.
  • 17. Atimtay A.T.: Combustion of agro-waste with coal in a fluidized bed. Clean Technologies and Environmental Policy 2010, 12, 43-52.
  • 18. Svoboda K. et al.: Integration of biomass drying with combustion/gasification technologies and minimization of emissions of organic compounds. Chemical Papers 2009, 63, 15-25.
  • 19. Tsai W.T et al.: Production of pyrolitic liquids from industrial sewage sludges in an induction-heating reactor. Bioresource Technology 2009, 100, 406-412.
  • 20. Fahmi R. et al.: The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 2008, 87, 1230-1240.
  • 21. Lin Y., Tanaka S.: Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology 2006, 69, 627-642.
  • 22. Searcy E., Flynn R: The Impact of Biomass Availability and Processing Cost on Optimum Size and Processing Technology Selection. Applied Biochemistry and Biotechnology 2009, 154, 271-286.
  • 23. Dhepe PL., Fukoka A.: Cellulose Conversion under Heterogenous Catalysis. ChemSusChem 2008, 1,969-975.
  • 24. Huber G.W., Dumesic J.A.: An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catalysis Today 2006, III, 119-132.
  • 25. Melis S.: Albemarle catalytic solutions for the co-processing of vegetable oil in conventional hydrotreaters. Albemarle, Catalysts Courier 2008, 73, 6-8.
  • 26. Leliveld B.: Albemarle contributes to production of highquality NExBTL synthetic biodiesel. Albemarle, Catalysts Courier 2006, 65, 8-9.
  • 27. Laohalidanond K.: The Production of Synthetic Diesel from Biomass. Chiang Mai University Journal 2007, 6, 127-139.
  • 28. Wang et al.: Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass and Bioenergy 2008, 32,573-581.
  • 29. www.choren.com (12.04.2010).
  • 30. www.enerkem.com (12.04.2010).
  • 31. Martinez A., Lopez C.: The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer-Tropsch products over hybrid catalysts. Applied Catalysis A: General 2005, 294, 251-259.
  • 32. Torget R.W. et al.: Fundamental Aspects of Dilute Acid Hydrolysis/Fractionation Kinetics of Hardwood Carbohydrates. I. Cellulose Hydrolysis. Industrial & Engineering Chemistry Research 2000, 39, 2817-2825.
  • 33. Zang Y.P, Lynd L.R.: Review Article. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulose systems. Biotechnology and Bioengineering 2004, 88, 797-824.
  • 34. Huber G.W. et al.: Raney Ni-Sn Catalyst for H2 Production from Biomass-Derived Hydrocarbons. Science 2003, 300, 2075-2077.
  • 35. Costa E. et al: Ethanol to gasoline process: effect of variables, mechanism, and kinetics. Industrial and Engineering Chemistry Process Design and Development 1985, 24,239-244.
  • 36. Johansson R. et al: The Hydrocarbon Pool in Ethanol-to-Gasoline over HZSM-5 Catalysts. Catalysis Letters 2009, 127, I -6.
  • 37. www.alphakat.de (12.04.2010).
  • 38. www.mmeag.com (12.04.2010).
  • 39. Tsai W.T., Lee M.K., Chang Y.M.: Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis 2006, 76, 230-237.
  • 40. Tomishige K. et al.: Syngas production by biomass gasification using Rh/ Ce02/Si02 catalysts and fluidized bed reactor. Catalysis Today 2004, 89, 389-403.
  • 41. Prins M.J., et al.: Exergetic optimisation of a production process of Fischer-Tropsch fuels from biomass. Fuel Processing Technology 2004, 86, 375- 389.
  • 42. Erlich C., et al.: Pyrolysis and gasification of pellets from sugar cane bagasse and wood. Fuel 2006, 85, 1535-1540.
  • 43. Muti Lin J.: Development of a high yield and low cycle time biomass char production system. Fuel Processing Technology 2006, 87, 487-495.
  • 44. Lin Y., Hwang G.: Charcoal from biomass residues of a Cryptomeria plantation and analysis of its carbon fixation benefit in Taiwan. Biomass and Bioenergy 2009, 33,1289-1294
  • 45. Zheng J: Pyrolysis oil from fast pyrolysis of maize stalk. Journal of Analytical and Applied Pyrolysis 2008, 83, 2005-212.
  • 46. Putun A.E., et al.: Comparison between the "slow" and "fast" pyrolysis of tobacco residue. Industrial Crops and Products 2007, 26, 307-314.
  • 47. Goyal H.B., et al.: Bio-fuels from thermochemical conversion of renewable resources: a review. Renewable and Sustainable Energy Reviews 2008, 12, 504-517.
  • 48. Figueiredo M.K., et al.: The isolation of pyrolysis oil from castor seeds via a Low Temperature Conversion (LTC) process and its use in a pyrolysis oil-die-sel blend. Fuel 2009, 88, 2193-2198.
  • 49. Holmgren J. et al: Consider upgrading pyrolysis oils into renewable fuels. Hydrocarbon Processing September 2008, 95-103.
  • 50. www.ensyn.com (12.04.2010).
  • 51. www.uop.com (12.04.2010).
  • 52. Chauhan B.S., et al.: Performance and emission studies on an agriculture engine on neat Jatropha oil. Journal of Mechanical Science and Technology 2010, 2, 529-535.
  • 53. Spolaore P, et al.: Review. Commercial Applications of Microalgae. Journal of Bioscience and Bioengineering 2006, 101, 87-96.
  • 54. NExBTL Renewable Synthetic Diesel, http://www.climatechange.ca.gov/ events/2006-06-27+28_symposium/presentations/CalHodge_handout_ NESTE_OIL.PDF
  • 55. Patent nr US 2007/0010682 AI, USA, Myllyoja et al.: Process for the manufacture of diesel range hydrocarbons, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0098-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.