TEODOR SKIEPKO

Faculty of Mechanical Engineering, Bialystok Technical University, Bialystok

The *Reynolds* **transport theorem for three phase systems with interface storage**

Introduction

The *Reynolds* Transport Theorem (since abbreviated RTT) is a kinematic relation expressing the accumulation rate of an Extensive Quantity (EQ) in a material system Σ given by Lagrangian description in terms referenced to a domain of spatially prescribed configuration (*Eulerian* description) of volume *V* (fixed or movable). The first *RTT* for heterogeneous systems of negligible interface storage is by *Truesdell* and *Toupin* [1]. If, however, contribution of the interface storage into system storage can be essential *Slattery* [2] proposed the *RTT* as

$$
\frac{d}{dt} = \left(\int_{\Omega_x} \eta dV + \int_{\Gamma_x} \eta_S dA\right) = \int_V \left(\frac{D\eta}{Dt} + \eta \operatorname{div} V\right) dV +
$$

$$
+ \int_S \left(\frac{D_S \eta_S}{Dt} + \eta_S \operatorname{div}_S V_S + \|\eta(V - U) \bullet \zeta\|\right) dA \tag{1}
$$

where *V* stands for an established fixed volume of reference (Eulerian description), *S* is the overall interface area within *V*. U and V_s are the spatial velocities of the interfaces and the surface systems moving in, respectively. $D\eta/Dt$ and $D_S\eta_S/Dt$ stand for the material derivatives of spatial and surface densities η and η_s , respectively. Term $\|\eta(V-U)\bullet\zeta\|$ of Eq.(1) reads as $\|\eta^*(V^* - U) \bullet \zeta^* + \eta^-(V^- - U) \bullet \zeta^* \|$ where ζ means the outward unit normal vector to the interface pointing into phase moving at *V* and refers to the jump condition for phasic spatial density across the interface set between two phases which properties are denoted by superscripts + and –. Single integral symbols \int used throughout the paper refer to either the volume (differential d*V*), surface (d*A*) or line (d*l*) integrals, respectively.

This paper is purposed to derive the *RTT* relation for three phase systems of essential interface storage in terms referenced to control volume *CV* surrounded by control surface *CS* being in arbitrary motion with respect to fixed (inertial) reference frame.

RTT for three phase systems

In Fig. 1 a three phase material system Σ is displayed occupying spatial domain Ω of boundary Γ split into phasic portions Ω_i ($i = 1, 2, 3$). The system is composed of three spatial subsystems $\bigcup_{i}^{3} \sum_{vi}$ separated by interfaces *S* and *K* surface subsystems $\bigcup_{k}^{K} \sum_{sk}$ dwelling in *S*. System passes through a movable *CV* bounded by *CS*, see in Fig. 2a. In view of Σ is composed of spatial and surface subsystems the *CV* comprises both spatial phasic domains of total volume *V* and interfacial domains of aggregated area *S*, hence $CV = V \cup S$.

Fig. 1. System Σ composed of spatial and surface subsystems

Volume *V* involves all the phasic volumes embedded in *CV*, hence $V = \bigcup_{i=1}^{3} V_i$. The aggregated interfacial area *S* involves the interfaces placed within *CV* so that $S = \bigcup_{k}^{K} S_{k}$. The entire *CS* consists in $CS = R \cup C$ where *R* is the aggregated external boundary of phasic domains determined as $R = \bigcup_i^3 R_i$ with understanding that each R_i is the entire external boundary accompanying the *i*th phasic volume. $C = \bigcup_{k}^{K} C_k$ stands for the aggregated boundary curve of all individual boundary curves C_k formed as intersection of *CS* and interface S_k .

Accumulation $\delta \Phi_{\Sigma}$ of an extensive quantity (abbreviated EQ) in system Σ is determined by the difference in system storages Φ_{Σ} at $t + \delta t$ and t , hence

$$
\delta \Phi_{\Sigma} = \Phi_{\Sigma} (t + \delta t) - \Phi_{\Sigma} (t)
$$
\n
$$
\text{accumulation in } \Sigma \qquad \text{strages in } \Sigma \qquad \text{strages in } \Sigma \qquad \text{strages in } \Sigma \qquad (2)
$$

In Fig. 2a the coincidence of Ω and *CV* is shown at an instant t . In such particular circumstances boundary Γ of system Σ traced by lowercase letters $abcdefa$ is superimposed upon boundary *CS* of *CV* indicated by *ghijklg*, hence *abcdefa* $=$ *ghijklg*, (Fig. 2a). In turn amounts of EQ stored within Σ and *CV* are the same, what gives

$$
\underbrace{\Phi_{\Sigma}(t)}_{\text{storage in }\Sigma} = \underbrace{\Phi_{CV}(t)}_{\text{strange in }CV}
$$
 (3)

At instant $t + \delta t$ system Σ is displaced partially out of *CV*. Hence, boundaries of Σ traced along $abcdefa$ and CV marked as *ghijklg* are shifted each other (Fig. 2b).

In turn, system Σ leaves to *CV* some amount of *EQ* stored in region *I* (*afedjklga*) and carries out of *CV* some amount of *EQ* stored in region *II* (*abcdiha*). Hence, based on Fig. 2b one gets storage $\Phi_{\Sigma}(t + \delta t)$ expressed in terms referenced to *CV* as

coincidence of Σ and CV at t displacement of Σ and CV at $t+\delta t$ Fig. 2. System Σ passing through a moving CV : a) coinciding condition at time t ; b) displacement of Σ with respect to CV at time $t + \delta t$

$$
\underbrace{\Phi_{\Sigma}(t+\delta t)}_{\substack{\text{storage in }\Sigma}} = \underbrace{\Phi_{CV}(t+\delta t)}_{\substack{\text{storage in }CV\\ \text{at }t+\delta t}} + \underbrace{\delta \Phi_{II}(\delta t)}_{\substack{\text{amount of }EQ\text{ carried by}\\ \text{Zout of }CV\text{ during }\delta t}} - \underbrace{\delta \Phi_{I}(\delta t)}_{\substack{\text{amount of }EQ\text{ brought}\\ \text{in }CV\text{ by Zduring }\delta t}} \quad (4)
$$

where $\delta \Phi_I(\delta t)$ stands for inflow of EQ into CV across CS . Term $\delta \Phi_{II}(\delta t)$ of Eq. (5) means the efflux of EQ across CS out of *CV*. By substitution Eqs (3, 4) into Eq. (2) one obtains

$$
\delta \Phi_{\Sigma} = \Phi_{CV}(t + \delta t) - \Phi_{CV}(t) + \delta \Phi_{II}(\delta t) - \delta \Phi_{I}(\delta t)
$$
(5)
accumulation in moving *CV* transform

Storages $\Phi_{CV}(t)$ and $\Phi_{CV}(t+\delta t)$ of Eq.(5) include those in the spatial domains of volume V (denoted by Φ_V) and those in the interfacial domains of area S (by Φ_S). Likewise, amounts of EQ transported by moving Σ refer to contributions made by macroscopic movements of both spatial (by $\delta_v \Phi$) and surface (by δ_s Φ) subsystems. With this understanding, corresponding terms are introduced into Eq. (5) and subsequently all the terms on both sides are divided by δt . Then by letting $\delta t \rightarrow 0$ one gets Eq. (5) expressed on the rate basis as

The left side of Eq. (6) converges at the accumulation rate of EQ within Σ to be given by

$$
\lim_{\delta t \to 0} \frac{\delta \Phi_{\Sigma}}{\delta t} = \frac{d \Phi_{\Sigma}}{dt} \tag{7}
$$

Below, the right side terms of Eq. (6) are converted into rate forms referenced to moving *CV*.

Fig. 3. Phasic domain $V_i(t)$ bounded by boundary R_i and moving **interfaces** S_k and S_{k+1}

*Term (***1***)*

Taking the limit the rate form of the first term of Eq. (6) becomes

$$
\lim_{\delta t \to 0} \frac{\Phi_V(t + \delta t) - \Phi_V(t)}{\delta t} = \frac{\mathrm{d}\Phi_V(t)}{\mathrm{d}t} \tag{8}
$$

where:

$$
\frac{\mathrm{d}\Phi_V(t)}{\mathrm{d}t} = \sum_i^3 \frac{\mathrm{d}\Phi_{V_i}(t)}{\mathrm{d}t} \text{ and } \Phi_{V_i}(t) = \int_{V_i(t)} \eta_i(z, t) \mathrm{d}V \tag{9}
$$

is the storage within the *i*th phasic domain of moving volume $V_i(t)$ at an instant *t* and \geq are the spatial coordinates. In Fig. 3 boundaries of volume *Vi* (*t*) are illustrated.

It is seen in Fig. 3 that the entire boundary \mathfrak{R}_i of V_i is a closed surface $\Re_i = R_i + S_i$ where R_i is the external part of \Re_i and $S_i = \sum_k^{K_i} S_k$ is the interfacial part of \Re_i assembled of K_i interfaces S_k associated phase *i*. Now the generalized transport theorem [1] is applied to determine each derivative of as

$$
\frac{d\Phi_{V_i}(t)}{dt} = \frac{d}{dt} \int_{V_i(t)} \eta_i(g, t) dV =
$$

$$
\int_{V_i} \frac{\partial \eta_i}{\partial \tau} dV + \int_{R_i} \eta_i V_{R_i} \bullet \mathbf{n}_i dA + \sum_{k}^{K_i} \int_{S_k} \eta_{i \in S_k} U_k \bullet \mathbf{n}_k dA \qquad (10)
$$

where boundaries R_i and S_k (Fig. 3) are moving at velocities V_{R_i} and U_k , respectively. n_i and n_k are the unit normal vectors to boundaries R_i and S_k , $(k = 1, 2)$, respectively, drawn outward with respect to $V_i(t)$. $\eta_{i \triangleright S_k}$ is the spatial density of EQ stored in the i^{th} phase taken at infinitesimally close position to interface S_k . Eq. (10) can be can be modified by the use of the *Gauss's* theorem [3]. Thus one obtains

$$
\int_{R_i} \eta_i V_{R_i} \bullet \mathbf{n}_i \mathrm{d}A + \sum_{k}^{K_i} \int_{S_k} \eta_{i \triangleright S_k} \mathbf{U}_k \bullet \mathbf{n}_k \mathrm{d}A = \int_{V_i} \mathrm{div}(\eta_i V_{\mathfrak{R}_i}) \mathrm{d}V \tag{11}
$$

By substitution Eq. (11) into Eq. (10) and subsequently Eq. (10) into Eq. (9) one gets

$$
\frac{\Phi_V(t)}{\mathrm{d}t} = \sum_{i}^{3} \int_{V_i} \frac{\partial \eta_i}{\partial t} dV + \sum_{i}^{3} \int_{V_i} \mathrm{div}(\eta_i V_{\mathfrak{R}_i}) dV =
$$
\n
$$
= \int_{V} \frac{\partial \eta}{\partial t} dV + \int_{V} \mathrm{div}(\eta V_{\mathfrak{R}}) dV \tag{12}
$$

Term (2)

d

The rate of accumulation in system by moving spatial subsystems relative to the *CV* refers to phases engaged in spatial regions I and II . Hence Term (2) of Eq. (6) is

Fig. 4. The spatial portions of region I of volume δV_{Li} and region II of volume $\delta V_{II,i}$ accompanied by associated boundaries

$$
\lim_{\delta t \to 0} \frac{\delta_v \Phi_{II}(\delta t) - \delta_v \Phi_{I}(\delta t)}{\delta t} = \lim_{\delta t \to 0} \frac{\sum_{i=0}^{3} \delta t \frac{d \Phi_{II,i}}{dt} - \sum_{i=0}^{3} \delta t \frac{d \Phi_{I,i}}{dt}}{\delta t}
$$
(13)

Below each derivative $d\Phi_{I,i}/dt$ of Eq. (13) referenced to the i^{th} spatial portion of region I of volume $\delta V_{I,i}$ bounded by $\Gamma_{I,i} \cup R_{I,i} \cup \delta S_{I,i}$, (Fig. 4a), is determined by the generalized transport theorem [1]. Hence one gets

$$
\frac{d\Phi_{Li}}{dt} = \int_{\delta V_{I,i}} \frac{\partial \eta_i}{\partial t} dV - \int_{\Gamma_{I,i}} \eta_i V_i \bullet n_i dA +
$$

+
$$
\int_{R_{I,i}} \eta_i V_{R_i} \bullet n_i dA + \sum_{k}^{K_i} \int_{\delta S_{I,k}} \eta_{i \triangleright \delta S_{I,k}} U_k \bullet n_k dA \tag{14}
$$

where $\delta S_{I,k}$ is the k^{th} portion of $\delta S_{I,i}$ and $\delta S_{I,i} = \sum_{k=1}^{K_i} \delta S_{I,k}$ $(Fig. 4a)$.

Likewise, for the i^{th} spatial portion of region II of volume $\delta V_{II,i}$ bounded by $\Gamma_{II,i} \cup R_{II,i} \cup \delta S_{II,i}$, (Fig. 4b), one gets accumulation rate $d\Phi_{II}/dt$ given as

$$
\frac{d\Phi_{II,i}}{dt} = \int_{\delta V_{II,i}} \frac{\partial \eta_i}{\partial t} dV + \int_{\Gamma_{II,i}} \eta_i V_i \bullet n_i dA +
$$

$$
- \int_{R_{II,i}} \eta_i V_{R_{II,i}} \bullet n_i dA + \sum_{k}^{K_i} \int_{\delta S_{II,k}} \eta_{i \rhd \delta S_{II,k}} U_k \bullet n_k dA \tag{15}
$$

where $\delta S_{II,k}$ is the k^{th} portion of $\delta S_{II,i}$ and $\delta S_{II,i} = \sum_{k}^{K_i} \delta S_{II,k}$ (Fig. 4b). By substitution Eqs $(14, 15)$ into Eq. (13) and letting $\delta t \rightarrow 0$ one obtains Term (2) of Eq. (6) in the rate form given as

$$
\lim_{\delta t \to 0} \frac{\delta_V \Phi_H(\delta t) - \delta_V \Phi_I(\delta t)}{\delta t} =
$$
\n
$$
= \sum_{i}^{3} \int_{P_i} \eta_i (V_i - V_{R_i}) \bullet n_i dA = \int_R \eta (V - V_{R_i}) \bullet n dA \qquad (16)
$$

where $R_i = R_{i,i} + R_{i,i}$ is the external boundary of the phasic volume V_i .

$Term(3)$

By letting $\delta t \rightarrow 0$ and taking the limit the rate form of Term (3) of Eq. (8) is

$$
\lim_{\delta t \to 0} \frac{\Phi_s(t + \delta t) - \Phi_s(t)}{\delta t} = \frac{\mathrm{d}\Phi_s(t)}{\mathrm{d}t} = \sum_{k}^{\kappa} \frac{\mathrm{d}\Phi_{S_k}}{\mathrm{d}t} \tag{17}
$$

Storage $\Phi_{S_k}(t)$ in the interface of area $S_k(t)$ at an instant t is described by an integral

$$
\Phi_{S_k}(t) = \int_{S_k(t)} \eta_s(y^1, y^2, t) \sqrt{\alpha(y^1, y^2, t)} dy^1 dy^2 \tag{18}
$$

Fig. 5. Interface S_k between two phases - see description in the text

where a is the determinant of the surface metric tensor and y^1 , y^2 are the surface coordinates. Hence, rate $d\Phi_s$ /dt of Eq. (17) is given now by the surface transport theorem [4]

$$
\frac{d\Phi_{S_k}}{dt} = \int_{S_k} \left(\frac{\partial \eta_{s,k}}{\partial t} + \eta_{s,k} \text{div}_s \boldsymbol{U}_k \right) dA + \oint_{C_k} \eta_{s,k} (\boldsymbol{V}_{C_k} - \boldsymbol{U}_k) \bullet \boldsymbol{b}_k dl \tag{19}
$$

where $dA = \sqrt{a}dy^1 dy^2$ and $\text{div}_s U_k$ is the surface divergence of U_k , V_{C_k} is the spatial velocity of C_k , b_k is the unit surface vector (tangent to S_k) normal to C_k directed outward of S_k $(Fig. 5)$.

By substitution Eq. (19) into Eq. (17) , taking the limit and performing summation one gets Term (3) of Eq. (6) given by

$$
\lim_{\delta t \to 0} \frac{\Phi_s(t + \delta t) - \Phi_s(t)}{\delta t} =
$$
\n
$$
\int_s \left(\frac{\partial \eta_s}{\partial t} + \eta_s \text{div}_s U \right) dA + \oint_C \eta_s (V_C - U) \cdot \mathbf{b} \, dt \tag{20}
$$

 $Term(4)$

By letting $\delta t \rightarrow 0$ and taking the limit the rate form of the 4^{th} term of Eq. (6) is

$$
\lim_{\delta t \to 0} \frac{\delta_s \Phi_{II}(\delta t) - \delta_s \Phi_{I}(\delta t)}{\delta t} = \lim_{\delta t \to 0} \frac{\sum_{k=0}^{K} \delta t \frac{\Phi_{II,k}^{(k)}}{dt} - \sum_{k=0}^{K} \delta t \frac{\Phi_{I,k}^{(k)}}{dt}}{\delta t}
$$
(21)

Consequently accumulation rate $d\Phi_{I,k}^{(S)}/dt$ in the interface portion $\delta S_{I,k}$, (Fig. 6a), is (generalized surface transport theorem [2])

$$
\frac{\mathrm{d}\Phi_{I,k}^{(s)}}{\mathrm{d}t} = \int_{\delta S_{I,k}} \left(\frac{\partial \eta_{s,k}}{\partial t} - \mathrm{grad}_S \eta_{s,k} \bullet U_k - 2H_k \eta_{s,k} U_k \bullet \zeta_k \right) dA + + \oint_{C_{I,k}} \eta_{s,k} V_{C_k} \bullet b_k \mathrm{d}l - \oint_{I_{I,k}} \eta_{s,k} V_{s,k} \bullet b_k \mathrm{d}l \tag{22}
$$

where $V_{s,k}$ is the spatial velocity of the surface system flowing in δS_{Lk} and H_k is the mean curvature of δS_{Lk} , l_{Lk} is the boun-

d

dary curve formed by intersection of system boundary Γ and *Sk*.

Likewise, accumulation rate $d\Phi_{II,k}^{(S)}$ /dt in interface portion δS_{IIk} located in region *II*, (Fig. 6b), is

$$
\frac{d\Phi_{II,k}^{(S)}}{dt} = \int_{\delta S_{II,k}} \left(\frac{\partial \eta_{s,k}}{\partial t} - \text{grad}_s \eta_{s,k} \bullet U_k - 2H_k \eta_{s,k} U_k \bullet \zeta_k \right) dA -
$$

$$
- \oint_{C_{II,k}} \eta_{s,k} V_{C_k} \bullet b_k dl + \oint_{I_{II,k}} \eta_{s,k} V_{s,k} \bullet b_k dl \qquad (23)
$$

By substitution Eqs (22, 23) into Eq. (21) and letting $\delta t \rightarrow 0$ one finds Term (4) of Eq. (6) becomes to be expressed in the rate form as

$$
\lim_{\delta t \to 0} \frac{\delta_s \Phi_H(\delta t) - \delta_s \Phi_I(\delta t)}{\delta t} =
$$
\n
$$
= \sum_{k=0}^{K} \oint_{C_{H,k}} \eta_{s,k} (V_{s,k} - V_{C_k}) \bullet b_k dl = \oint_C \eta_s (V_s - V_C) \bullet b dl \qquad (24)
$$

By substitution expression (7) onto left side of Eq. (6) and relations (12) , (16) , (20) and (24) into the right side of Eq. (6) we can generalize the *RTT* for three phase systems as follows

$$
\frac{\mathrm{d}\Phi_{\Sigma}}{\mathrm{d}t} = \underbrace{\int_{V\delta t}^{\partial \eta} \mathrm{d}V + \int_{V} \mathrm{div}(\eta V_{\Re}) \mathrm{d}V + \int_{R} \eta (V - V_{R}) \bullet \mathbf{n} \mathrm{d}A}_{\text{phasic terms}}_{\text{phasic terms}} + \underbrace{\int_{S}^{\partial \eta} \left(\frac{\partial \eta_{S}}{\partial t} + \eta_{S} \mathrm{div}_{S} U \right) \mathrm{d}A + \int_{C}^{\eta} \eta_{S} (V_{C} - U) \bullet \mathbf{b} \mathrm{d}l + \int_{C}^{\eta} \eta_{S} (V_{S} - V_{C}) \bullet \mathbf{b} \mathrm{d}l}_{\text{interfacial terms}}
$$

The third term on the right side of Eq. (25) can be modified by the use of the *Gauss's* theorem for spatial domains [3]. Thus one gets

$$
\int_{R} \eta (V - V_{R}) \cdot n \, dA =
$$
\n
$$
= \int_{V} \text{div}[\eta (V - V_{\mathfrak{R}_{i}})] \, dV + \int_{S} \left\| \eta_{\text{p},S} (V_{\text{p},S} - U) \cdot \zeta \right\| dA \tag{26}
$$

where

$$
\int_{S} \|\eta_{\triangleright S} (V_{\triangleright S} - U) \bullet \zeta \| dA =
$$
\n
$$
= \sum_{k}^{K} \int_{S_{k}} \|\eta_{\triangleright S_{k}}^{+} (V_{\triangleright S_{k}}^{+} - U_{k}) \bullet \zeta^{+} + \eta_{\triangleright S_{k}}^{-} (V_{\triangleright S_{k}}^{-} - U_{k}) \bullet \zeta^{-} \| dA \quad (27)
$$

Substitution of Eq. (26) into Eq. (25) yields the final form of the *RTT* attempted as follows

$$
\frac{d\Phi_{\Sigma}}{dt} = \underbrace{\int_{\mathbf{v}} \frac{\partial \eta}{\partial t} dV + \int_{\mathbf{v}} \text{div}(\eta V_{\Re}) dV}_{\text{accumulation in moving spatial phase}} + \underbrace{\int_{\mathbf{v}} \text{div}[\eta(V - V_{\Re}) dV}_{\text{domain of volume } V} + \underbrace{\int_{\text{of spatial subsystems across }\Re} dV}_{\text{conains of volume } V} + \underbrace{\int_{S} \left(\frac{\partial \eta_{s}}{\partial t} + \eta_{s} \text{div}_{s} U\right) dA}_{\text{accumulation of interfacial}} + \underbrace{\int_{\text{acumulation of interfacial}} \left(\frac{\partial \eta_{s}}{\partial t} + \eta_{s} \text{div}_{s} U\right) dA}_{\text{transport of area } S} + \underbrace{\int_{\text{conning of area } S} \left|\eta_{\log} (V_{\log} - U) \bullet \text{bd } l + \int_{\text{transport of two}} \left|\eta_{\log} (V_{\log} - U) \bullet \zeta\right|\right|}_{\text{transport of surface } S} \right|} + \underbrace{\int_{\text{subsystem in reference } S} \left|\eta_{\log} (V_{\log} - V_{\log} \bullet \text{div}_{s} \text{div}_{s}
$$

In this notation subscript $\triangleright S_k$ stands for value of a phasic property referenced at infinitesimally close spatial position to S_k . Note also in Eq. (28) the spatial divergence operator div and surface divergence operator div*^s* are different, see formulas for these operators given by *Slattery* [2].

Concluding remarks

The *RTT* is a basic tool in development of the local instantaneous model equations together with corresponding jump conditions based on which averaged models can be derived. The form of *RTT* given by Eq. (28) is the most general because it expresses the rate of accumulation in a three phase system in terms of moving and deformable *CV* of arbitrary prescribed configuration in which *EQ* can be accumulated both by the phases and interface. Worthy to mention is applicability of *RTT* relation developed also to multiphase systems provided that particular terms can account in contributions done by all spatial and surface subsystems involved.

REFERENCES

- 1. *C. Truesdell and R. A. Toupin*: The classical field theories, in S. Flügge (ed.), Handbuch der Physik, vol.**1/3**, Berlin, Springer-Verlag, 1960.
- 2. *J. C. Slattery*: Interfacial Transport Phenomena, Springer-Verlag, New York Inc., 1990.
- 3. *W. Kaplan*: Advanced Calculus, 2nd edition, Addison-Wesley, Reading, 1973.
- 4. *R. Aris*: Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Prentice-Hall, Inc., 1962.