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The Reynolds transport theorem for three phase
systems with interface storage

Introduction

The Reynolds Transport Theorem (since abbreviated RTT)
is a kinematic relation expressing the accumulation rate of
an Extensive Quantity (EQ) in a material system � given by
Lagrangian description in terms referenced to a domain of
spatially prescribed configuration (Eulerian description) of
volume V (fixed or movable). The first RTT for heterogeneous
systems of negligible interface storage is by Truesdell and
Toupin [1]. If, however, contribution of the interface storage
into system storage can be essential Slattery [2] proposed the
RTT as
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where V stands for an established fixed volume of reference
(Eulerian description), S is the overall interface area within
V. U and Vs are the spatial velocities of the interfaces and the
surface systems moving in, respectively. D�/Dt and DS�S/Dt
stand for the material derivatives of spatial and surface den-
sities � and �s, respectively. Term � #( )V U� " of Eq.(1) reads

as � # � #
� � � �

� " � � "( ) ( )V U V U+ - where � means the out-

ward unit normal vector to the interface pointing into phase
moving at V and refers to the jump condition for phasic spa-
tial density � across the interface set between two phases
which properties are denoted by superscripts + and –. Single
integral symbols � used throughout the paper refer to either
the volume (differential dV), surface (dA) or line (dl) inte-
grals, respectively.

This paper is purposed to derive the RTT relation for three
phase systems of essential interface storage in terms referen-
ced to control volume CV surrounded by control surface CS
being in arbitrary motion with respect to fixed (inertial) refe-
rence frame.

RTT for three phase systems

In Fig. 1 a three phase material system ! is displayed occu-
pying spatial domain � of boundary � split into phasic por-
tions �i (i = 1, 2, 3). The system is composed of three spatial
subsystems �ii $

3
� separated by interfaces S and K surface

subsystems skk
K
$� dwelling in S. System passes through

a movable CV bounded by CS, see in Fig. 2a. In view of � is
composed of spatial and surface subsystems the CV compri-
ses both spatial phasic domains of total volume V and interfa-
cial domains of aggregated area S, hence CV V S� % .

Volume V involves all the phasic volumes embedded in CV,
hence V Vii�

3
� . The aggregated interfacial area S involves

the interfaces placed within CV so that S Skk
K

� � . The entire
CS consists in CS R C� % where R is the aggregated external
boundary of phasic domains determined as R Rii�

3
� with un-

derstanding that each Ri is the entire external boundary ac-
companying the ith phasic volume. C Ckk

K
� � stands for the

aggregated boundary curve of all individual boundary curves
Ck formed as intersection of CS and interface Sk.

Accumulation 	
� of an extensive quantity (abbreviated
EQ) in system � is determined by the difference in system
storages 
� at t + 	t and t, hence
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In Fig. 2a the coincidence of � and CV is shown at an in-
stant t. In such particular circumstances boundary  of sys-
tem ! traced by lowercase letters abcdefa is superimposed
upon boundary CS of CV indicated by ghijklg, hence abcdefa
= ghijklg, (Fig. 2a). In turn amounts of EQ stored within �

and CV are the same, what gives
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At instant t + 	t system � is displaced partially out of CV.
Hence, boundaries of � traced along abcdefa and CV marked
as ghijklg are shifted each other (Fig. 2b).

In turn, system ! leaves to CV some amount of EQ stored
in region I (afedjklga) and carries out of CV some amount of
EQ stored in region II (abcdiha). Hence, based on Fig. 2b one
gets storage 
�(t + 	t) expressed in terms referenced to CV as
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Fig. 1. System � composed of spatial and surface subsystems
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where 	
I(	t) stands for inflow of EQ into CV across CS.
Term 	
II (	t) of Eq. (5) means the efflux of EQ across CS out
of CV. By substitution Eqs (3, 4) into Eq. (2) one obtains

�
& &

&

' ' '!

!accumulation in
during

accum
t

CV CVt t t� � �( ) ( )
ulation in moving transCV

II It t
� ���� ����

� �& & & &' '( ) ( )
port acrossCS

� ���� ����
(5)

Storages 
CV(t) and 
CV(t+	t) of Eq.(5) include those in the
spatial domains of volume V (denoted by 
V) and those in the
interfacial domains of area S (by 
S). Likewise, amounts of
EQ transported by moving � refer to contributions made by
macroscopic movements of both spatial (by 	v
) and surface
(by 	s
) subsystems. With this understanding, corresponding
terms are introduced into Eq. (5) and subsequently all the
terms on both sides are divided by 	t. Then by letting &t (0
one gets Eq. (5) expressed on the rate basis as
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The left side of Eq. (6) converges at the accumulation rate
of EQ within � to be given by
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Below, the right side terms of Eq. (6) are converted into
rate forms referenced to moving CV.

Term (1)

Taking the limit the rate form of the first term of Eq. (6) be-
comes
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is the storage within the ith phasic domain of moving volume
Vi(t) at an instant t and z are the spatial coordinates. In Fig. 3
boundaries of volume Vi(t) are illustrated.

It is seen in Fig. 3 that the entire boundary ) i of Vi is a clo-
sed surface ) � �i i iR S where Ri is the external part of ) i

and S Si kk
Ki� $ is the interfacial part of ) i assembled of Ki in-

terfaces Sk associated phase i. Now the generalized transport
theorem [1] is applied to determine each derivative of as
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where boundaries Ri and Sk (Fig. 3) are moving at velocities
VRi

and Uk, respectively. ni and nk are the unit normal vectors
to boundaries Ri and Sk, (k = 1, 2), respectively, drawn
outward with respect to Vi(t). �i S k	

is the spatial density of
EQ stored in the ith phase taken at infinitesimally close posi-
tion to interface Sk. Eq. (10) can be can be modified by the use
of the Gauss’s theorem [3]. Thus one obtains
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By substitution Eq. (11) into Eq. (10) and subsequently
Eq. (10) into Eq. (9) one gets
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Term (2)

The rate of accumulation in system by moving spatial sub-
systems relative to the CV refers to phases engaged in spatial
regions I and II. Hence Term (2) of Eq. (6) is
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Fig. 2. System � passing through a moving CV: a) coinciding con-
dition at time t; b) displacement of � with respect to CV at time

t + �t

Fig. 3. Phasic domain Vi(t) bounded by boundary Ri and moving
interfaces Sk and Sk+1
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Below each derivative d
I,i/dt of Eq. (13) referenced to the
ith spatial portion of region I of volume 	VI,i bounded by
 I i I i I iR S, , ,% %& , (Fig. 4a), is determined by the generalized
transport theorem [1]. Hence one gets
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where 	SI,k is the kth portion of &SI,i and & &S SI i I kk
Ki

, ,� $

(Fig. 4a).
Likewise, for the ith spatial portion of region II of volume

&VII,i bounded by  II i II i II iR S, , ,% %& , (Fig. 4b), one gets accu-

mulation rate d
II,i/dt given as
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where 	SII,k is the kth portion of 	SII,i and & &S SII i II kk
Ki

, ,� $

(Fig. 4b). By substitution Eqs (14, 15) into Eq. (13) and letting
&t (0 one obtains Term (2) of Eq. (6) in the rate form given as
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where R R Ri I i II i� �, , is the external boundary of the phasic
volume Vi.

Term (3)

By letting &t (0 and taking the limit the rate form of Term
(3) of Eq. (8) is
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Storage'S k
t( ) in the interface of area Sk(t) at an instant t is

described by an integral

'S sS tk k
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where a is the determinant of the surface metric tensor and
y1, y2 are the surface coordinates. Hence, rate d d'S k

t/ of
Eq. (17) is given now by the surface transport theorem [4]
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where dA a y y� d d1 2 and divsUk is the surface divergence of
Uk, VCk

is the spatial velocity of Ck, bk is the unit surface
vector (tangent to Sk) normal to Ck directed outward of Sk

(Fig. 5).
By substitution Eq. (19) into Eq. (17), taking the limit and

performing summation one gets Term (3) of Eq. (6) given by
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Term (4)

By letting &t (0 and taking the limit the rate form of the
4th term of Eq. (6) is
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Consequently accumulation rate d d'I k
S t,

( ) / in the interface
portion 	SI,k, (Fig. 6a), is (generalized surface transport
theorem [2])
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where Vs,k is the spatial velocity of the surface system flowing
in 	SI,k and Hk is the mean curvature of 	SI,k. lI k, is the boun-
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Fig. 4. The spatial portions of region I of volume &VI i, and region II

of volume &VII i, accompanied by associated boundaries

Fig. 5. Interface Sk between two phases – see description in the
text

Fig. 6. Interfacial portions �SI,k and ��II,k, (k = 1, 2), of region I and
region II, respectively, accompanied by associated boundaries
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dary curve formed by intersection of system boundary � and
Sk.

Likewise, accumulation rate d d'II k
S t,

( ) / in interface portion
	SII,k located in region II, (Fig. 6b), is
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By substitution Eqs (22, 23) into Eq. (21) and letting &t (0
one finds Term (4) of Eq. (6) becomes to be expressed in the
rate form as
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By substitution expression (7) onto left side of Eq. (6) and
relations (12), (16), (20) and (24) into the right side of Eq. (6)
we can generalize the RTT for three phase systems as follows
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The third term on the right side of Eq. (25) can be modified
by the use of the Gauss’s theorem for spatial domains [3].
Thus one gets
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Substitution of Eq. (26) into Eq. (25) yields the final form of
the RTT attempted as follows
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In this notation subscript 	 Sk stands for value of a phasic
property referenced at infinitesimally close spatial position to
Sk. Note also in Eq. (28) the spatial divergence operator div
and surface divergence operator divs are different, see formu-
las for these operators given by Slattery [2].

Concluding remarks

The RTT is a basic tool in development of the local instan-
taneous model equations together with corresponding jump
conditions based on which averaged models can be derived.
The form of RTT given by Eq. (28) is the most general becau-
se it expresses the rate of accumulation in a three phase sys-
tem in terms of moving and deformable CV of arbitrary pre-
scribed configuration in which EQ can be accumulated both
by the phases and interface. Worthy to mention is applicabili-
ty of RTT relation developed also to multiphase systems
provided that particular terms can account in contributions
done by all spatial and surface subsystems involved.
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