JERZY MAREK GUTTETER-GRUDZIŃSKI

Wydział Mechaniczny, Akademia Morska, Szczecin

Hydrocyklony do rozdziału układu ciecz – ciecz

Wprowadzenie

Hydrocyklony do rozdziału układu ciecz – ciecz stanowią niewielką część (~5%) ogólnej liczby stosowanych obecnie w przemyśle urządzeń separujących. Powszechne zastosowanie znalazły na platformach i statkach ratowniczych neutralizujących rozlewy olejowe [1, 2].

Określenie średnicy kropel oleju wydzielanych w hydrocyklonie

Aby uzyskać jak najlepszą sprawność rozdziału dwóch niemieszających się cieczy w hydrocyklonie ciecz - ciecz należy tak dobrać konstrukcję hydrocyklonu i prędkość kropel oleju, aby w wirze swobodnym nie występowała wtórna ich dyspersja. Powtórne rozdrobnienie kropel będzie zależało od prędkości wlotowej, jej wzrostu w trakcie przepływu po spirali osi hydrocyklonu oraz rozwiązania konstrukcyjnego wielkości kąta stożka i długości części cylindrycznej. Z parametrów fizycznych mających wpływ na rozdrobnienie największy wpływ będą miały wielkości: strumień zasilający q_v , średnica włotowa d i procentowy stosunek przelewu q_{ν}/q_{ν} . W opisie mechanizmu zjawisk separacji przyjmuje się uproszczony dwuwymiarowy model wraz z upraszczającymi założeniami. Prędkość styczną V_t i siły działające na kroplę oleju poruszającą się w wydzielonej płaszczyźnie poziomej, prostopadłej do osi hydrocyklonu pokazano na rys. 1 i 2. Wskutek stycznego wlotu strumienia zasilającego hydrocyklon z prędkością $V_{\rm t}$, powstaje pole przyspieszeń dośrodkowych, co wraz ze składową promieniową prędkości V_r powoduje przemieszczenie się lżejszej kropli oleju w kierunku osi hydrocyklonu.

W uproszczonym modelu zakłada się równowagę siły odśrodkowej i oporu działających na kroplę oleju. Dla Re < 0.4, a więc w ruchu laminarnym kropli oleju (prawo *Stokesa*), w przypadku równowagi siły odśrodkowej i oporu otrzymamy:

Rys. 1. Przepływ mieszaniny dwufazowej w klasycznym hydrocyklonie

$$\frac{\pi d_o^3}{6} \left(\rho_w - \rho_o \right) \frac{V_t^2}{r} = 3\pi \eta_w d_o V_r$$

(1)

gdzie: d_o – średnica kropli oleju, [m], ρ_w, ρ_o – gęstość wody i oleju, [kg/m³], V_t – prędkość styczna, [m/s], η – lepkość dynamiczna wody, [Pa s].

Składową prędkości promieniowej V_r otrzymamy z równania (1):

$$V_{r} = \frac{dr}{dt} = \frac{(\rho_{w} - \rho_{o})V_{t}^{2}d_{o}^{2}}{18\eta}\frac{1}{r}$$

Po rozdzieleniu zmien- w hydrocyklonie, $V_t(r)$ nych otrzymuje się:

(2)

$$dt = \frac{18\eta_w}{(\rho_w - \rho_o)V_t^2 d_o^2} r dr$$
(3)

Najdłuższy czas przejścia kropel oleju ku osi hydrocyklonu będą miały krople, które znajdą się na zewnętrznym promieniu R, czyli najdalej od rdzenia. Po scałkowaniu równania (3) w granicach od R do r_o i od 0 do t oraz założeniu równomiernego rozkładu prędkości V_t = const., czas separacji cząstki oleju wyniesie:

$$t' = \frac{9\eta_w (R^2 - r_o^2)}{(\rho_w - \rho_o)V_t^2 d_o^2}$$
(4)

Czas t' przejścia kropli oleju ku osi hydrocyklonu powinien być krótszy lub równy czasowi t'' przebywania kropli oleju w strefie działania hydrocyklonu, czyli:

$$' \le t''$$
 (5)

Czas t'' można wyrazić w sposób przybliżony, jako stosunek drogi L przebytej przez cząstkę oleju do jej prędkości stycznej V_i :

$$t'' = \frac{L}{V_t} = \frac{2\pi RN}{V_t} \tag{6}$$

gdzie:

N – liczba zwojów wykonanych przez cząstkę przed jej wpadnięciem do osi rdzenia.

Czas przebywania cząstki oleju w części cylindrycznej hydrocyklonu można też wyrazić wychodząc z objętości przepływu w części cylindrycznej hydrocyklonu według wzoru:

$$t^{\prime\prime\prime} = \frac{H_c}{V_o} = \frac{H_c \pi (R^2 - r^2)}{q_v}$$
(7)

gdzie:

 $V_o\ -$ prędkość osiowa w hydrocyklonie,

 $H_c \;$ – wysokość części cylindrycznej.

Z doświadczeń wykonanych przez autora, przy dozowaniu paliwa lekkiego i oleju smarnego do hydrocyklonu (Rys. 3) [4] przy $q_v = 1 \div 5$ m³/h uzyskano $N = 15 \div 80$. Zmierzony czas t" przebywania oleju w modelu (przezroczystym) wynosił 1,5÷3 s.

Po przyrównaniu czasów z równań (4) i (6) otrzymano średnicę minimalnej kropli oleju wydzielonej w hydrocyklonie:

$$d_{cz.oleju} \ge \sqrt{\frac{9\eta_w (R^2 - r_o^2)}{2\pi(\rho_w - \rho_o)V_t R}} \sqrt{\frac{1}{N}}$$
(8)

Wzór (8) pozwala na wstępne określenie wielkości oddzielanej kropli oleju $d_o.$

W rzeczywistości V_t nie jest stała, lecz zależy od strat wewnetrznych tarcia według równania wiru swobodnego:

$$V_r r^n = -\cos t$$
 (9)

gdzie:

n – wyznaczone doświadczalnie przez Kelsalla zawiera się w przedziale $0,4\div0,9$.

Składowa prędkości $V_t(r)$ pokazana jest na rys. 2. Prędkość styczną można wstawić do równania (8) i wykonać całkowanie [1, 3]:

$$d_o = \frac{3}{C} \sqrt{\frac{\eta q_v}{\pi (n+1)(\rho_w - \rho_o)} \frac{R^{2(n+1)} - r^{2(n+1)}}{H_c (R^2 - r^2)}}$$
(10)

gdzie:

H_c – wysokość części cylindrycznej hydrocyklonu (wlotowej), [m].

Listewnik [1] wyprowadził wzór na d_o i dla $V_t = 5,32$ m/s oraz paliwa lekkiego oddzielanego w modelowym hydrocyklonie AM otrzymał $d_o = 43 \ \mu\text{m}$. Wymiary modelowego hydrocyklonu AM są następujące [4]: $a = 600 \ \text{mm}$, $b = 700 \ \text{mm}$, $c = 165 \ \text{mm}$, $d = 8 \ \text{mm}$, $e = 10 \ \text{mm}$, $f = 0 + 25 \ \text{mm}$, $g = 410 \ \text{mm}$ (wysokość stożka), $\propto = 7^\circ$ (kąt wierzchołkowy).

Przy uwzględnieniu wpływu stożka na jakość separacji cząstek w hydrocyklonie na podstawie [3] minimalną średnicę kropli da się wyznaczyć z równania:

$$d'_{o} = \frac{3\sqrt{2}}{V_{t}} \sqrt{\frac{r(R-r)\eta V_{w}}{(\rho_{w} - \rho_{o})h}}$$
(11)

gdzie:

 V_w – prędkość osiowa, [m/s], h – wysokość stożka, [m].

Dla danych: $q_v = 2$ m³/h; $V_t = 5$ m/s; n = 0.5; R = 0.045 m; r = 0.02 m; $\Delta \rho = (1000 - 850) =$ 150 kg/m³; $H_c = 0.15$ m oraz h = 0.37 m otrzymano: $d_o = 42.9$ µm według (10) oraz $d_o =$ 26.7 µm według (11).

W tablicy 1 zamieszczono wartości średnicy kropli oleju d_o [µm] obli-

Rys. 3. Hydrocyklon modelowy AM [4]

czone według wzoru (8) dla danych: R = 0.045m; $r_o = 0.003$ m; $V_u = 5$ m/s; $\rho_{w_{20}} = 998.2$ kg/m³; $\rho_o = 842$ kg/m³; $\eta_w = 1\cdot 10^{-3}$ Pa·s oraz $q_r = 1, 2, 3, 4, 5$ m³/h, zakładając liczbę zwojów wykonanych przez kroplę: N = 15, 30, 40, 60, 80.

Tablica 1 Obliczona średnica kropli oleju dla różnej liczby wykonanych przez nią zwojów

Ν	15	30	40	60	80
$d_o [\mu { m m}]$	100	70	61	50	43

Należy dodać, że obliczenia przepływowe w hydrocyklonie zawierają wiele uproszczeń; między innymi pominięto zjawiska zachodzące w warstwie przyściennej i zjawisko wtórnej dyspersji, które zachodzi przy bardzo dużych prędkościach wlotowych, wrastających przy przejściu na mniejszy promień w ruchu spiralnym ku osi hydrocyklonu.

Wyniki pomiarów sprawności separacji i rozkładów wielkości kropel oleju za hydrocyklonem

Dla parametrów zamieszczonych w tablicy 2 obliczono sprawność separacji hydrocyklonu AM:

$$\eta = 1 - \frac{c_{odl}}{c_{wl}} = 1 - \frac{0,0016}{0,1} = 0,984$$
(12)

Tablica 2

Parametry układu podczas pobierania próbek (paliwo lekkie) przy wyznaczaniu rozkładu średnic cząstek oleju w hydrocyklonie modelowym AM

Ilość przelewu q_v/q_p , [%]	10	Ciśnienie po	0,4
Ciśnienie pompy p_p , [bar]	0,8	Ciśnienie p_h	0,58
Stężenie oleju na wlocie, [%]	0,1	Stężenie na odlocie, [%]	0,0016

Na rys. 4 przedstawiono rozkłady objętościowe i ilościowe kropel oleju za hydrocyklonem AM, określone miernikiem *Malvern 2000* zgodnie z normą ISO 13320/01. Należy stwierdzić, że wyniki uzyskane w hydrocyklonie AM dają szansę na zastosowania go w systemach oczyszczania wód zaolejonych.

Rys. 4. Rozkład wielkości kropel oleju (paliwo lekkie) za hydrocyklonem AM, $c_d = 0,1\%$

LITERATURA

- J. Listewnik: Badanie odolejania wód statkowych przy wykorzystaniu niekonwencjonalnych hydrocyklonów, Politechnika Szczecińska, Wydział Mechaniczny, praca doktorska, Szczecin 1991.
- 2. J. Listewnik: Propozycje systemów oczyszczania zaolejonych wód morskich w hydrocyklonach, PAN KBN, WSM, Szczecin 2000.
- K. Jeżowiecka-Kabsch: Mechanika płynów, skrypt Politechniki Wrocławskiej, Wrocław 1985.
- Patent RP 1919701, J. Listewnik, Akademia Morska w Szczecinie 2006.