Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Application of additive fluctuations model to sales forecasting
Języki publikacji
Abstrakty
Wielkość sprzedaży produktów przedsiębiorstwa zależy od wielu czynników popytowych i podażowych. Dysponując prognozą sprzedaży, przedsiębiorstwo może dostosować do niej wielkość produkcji, tak aby uniknąć strat z tytułu jej nadmiaru lub niedoboru i osiągnąć maksymalny zysk w danych warunkach rynkowych. Artykuł ma przedstawić zasady weryfikowania, szacowania i prognozowania addytyw-nego modelu wahań sprzedaży na przykładzie sprzedaży piwa Grupy Żywiec, zaczynając od doboru i opracowania danych, a kończąc na ustaleniu prognoz i ich błędów. Głównym celem jest empiryczne sprawdzenie skali błędów prognozy sprzedaży w warunkach uzasadniających stosowanie modelu addytywnego. Dlatego zgromadzono i przetworzono dane o kwartalnej sprzedaży piwa Grupy Żywiec w latach 2002-2007. Zweryfikowano analityczną funkcję trendu sprzedaży. Sprawdzono, czy zaobserwowana sprzedaż podlega wahaniom addytywnym czy multiplikatywnym. Stwierdzono, że składnik losowy sprzedaży jest procesem autoregresyjnym rzędu pierwszego. Integralnie, uogólnioną metodą najmniejszych kwadratów oszacowano osiem modeli wahań addytywnych z trendem liniowym sprzedaży piwa Grupy Żywiec. Na podstawie tych modeli postawiono prognozy i wyznaczono wielkości ich błędów ex ante i ex post. Rząd wielkości błędów wykazuje dużą przydatność addytywnego modelu wahań do prognozowania sprzedaży badanej firmy.
Value of product sales is a result of many demand and supply factors. Having sales forecast, enterprise can match production scale to sales and avoid loss from excess or shortage of production. Enterprise also can attain maximum profit in given market conditions. An article is to present rules of verification, estimation and application of a fluctuation additive model in order to forecast sales in the example of Grupa Żywiec beer sales, begin-ing from data work and ending with given forecasts and determined forecast errors. Mam aim of the article is an empirical determination of scale of the forecast errors in a verified additive fluctuation model. Therefore an analytical function of sales trend was determined. Additive and multiplicative fluctuation models were considered. First order autoregression of the sale random component was found out. The additive model of beer sales of Żywiec with its linear trend was estimated with use of the generalised least squares method. A few forecasts were made and then" errors were calculated ex ante and ex post. Additive model of sales fluctuations was useful in forecasting Grupa Żywiec beer sales because of significant accuracy of its forecasts. An article is to present rules of verification, estimation and application of a fluctuation additive model in order to forecast sales in the example of Grupa Żywiec beer sales, begin-ing from data work and ending with given forecasts and determined forecast errors. Mam aim of the article is an empirical determination of scale of the forecast errors in a verified additive fluctuation model. Therefore an analytical function of sales trend was determined. Additive and multiplicative fluctuation models were considered. First order autoregression of the sale random component was found out. The additive model of beer sales of Żywiec with its linear trend was estimated with use of the generalised least squares method. A few forecasts were made and then" errors were calculated ex ante and ex post. Additive model of sales fluctuations was useful in forecasting Grupa Żywiec beer sales because of significant accuracy of its forecasts.
Rocznik
Tom
Strony
45--59
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Instytut Inżynierii Zarządzania Politechniki Poznańskiej
Bibliografia
- [1] Borkowski B., Dudek H., Szczęsny W., Ekonometria. Wybrane zagadnienia, Wyd. Naukowe PWN, Warszawa 2004.
- [2] Chów G.C., Ekonometria, Wyd. Naukowe PWN, Warszawa 1995
- [3] Cieślak M. (red.), Prognozowanie gospodarcze. Metody i zastosowania, Wyd. Naukowe PWN, Warszawa 1997.
- [4] Dittmann P., Prognozowanie w przedsiębiorstwie, Oficyna Ekonomiczna, Kraków 2003.
- [5] Guzik B. (red.), Ekonometria i badania operacyjne. Zagadnienia podstawowe, Wyd. Akademii Ekonomicznej w Poznaniu, Poznań 1998.
- [6] Nazarko J. (red.), Wprowadzenie do metodyki prognozowania, Wyd. Politechniki Białostockiej, Białystok 2004.
- [7] Sobczyk M., Statystyka, Wyd. Naukowe PWN, Warszawa 1998.
- [8] Welfe A., Ekonometria, P WE, Warszawa 2003.
- [9] Witkowska D., Podstawy ekonometrii i teorii prognozowania, Oficyna Ekonomiczna, Kraków 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0093-0004