Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we establish some convergence results in a complete b-metric space for the Picard iteration associated to two multi-valued weak contractions by employing the concepts of monotone and comparison functions. Our results generalize and extend those of Berinde and Berinde [8], Daffer and Kaneko [15] and Nadler [27]. Theorem 2.1 in our paper generalizes Theorem 5 of Nadler [27] and a recent result of Berinde and Berinde [8], it also extends, improves and unifies several classical results pertainning to single and multi-valued contractive mappings in the fixed point theory. Also, Theorem 2.3 is a generalization and extension of Theorem 5 of Nadler [27] as well as Theorem 4 of Berinde and Berinde [8].
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
45--56
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
autor
- Department of Mathematics, Obafemi Awolwo University, Ile-Ife, Nigeria, polatinwo@oauife.edu.ng
Bibliografia
- [1]AGARWAL R.P., MECHAN M., O'REGAN D., Fixed Point Theory and Applications, Cambridge University Press 2001.
- [2]BANACH S., Sur les Operations dans Ies Ensembles Abstraits et Ieur Applications aux Equations Integrales, Fund. Math., 3(1922), 133-181.
- [3]BERINDE V., A priori and a posteriori Error Estimates for a Class of (φ-Contractions, Bulletins for Applied & Computing Math., (1999), 183-192.
- [4]BERINDE V., Iterative Approximation of Fixed Points, Editura Efemeride (2002).
- [5]BERINDE V., On the Approximation of Fixed Points of Weak (^-Contractive Operators, Fixed Point Theory, 4(2)(2003), 131-142.
- [6]BERINDE V., On the Approximation of Fixed Points of Weak Contractive Mappings, Carpathian J. Math., 19(1)(2003), 7-22.
- [7]BERINDE V., Approximating Fixed Points of Weak Contractions Using Picard Iteration, Nonlinear Analysis Forum, 9(1)(2004), 43-53.
- [8]BERINDE M., BERINDE V., On A General Class of Multi-valued Weakly Picard Mappings, J. Math. Anal Appl., 326(2007), 772-782.
- [9]BOYD D.W., WONG J.S.W., On Linear Contractions, Proc. Amer. Math.Soc., 20(1969), 458-464.
- [10]BROWDER F., Nonexpansive Nonlinear Operators in a Banach Space, Proc.Nat. Acad. Scl U.S.A., 54(1965), 1041-1044.
- [11]CZERWLK S., Nonlinear Set-valued Contraction Mappings in b—Metric Spaces, Atti Sem. Mat. Fis. Univ. Modena, 46(2)(1998), 263-276. MR1665883 (99j :54043).
- [12]CiRic L.B., Fixed Point Theory, Contraction Mapping Principle, FME Press, Beograd 2003.
- [13]CiRic L.B., UME J.S., Common Fixed Point Theorems for Multi-valued Non-self Mappings, Publ Math. Debrecen, 60(3-4)(2002), 359-371.
- [14]CIRIC L.B., UME J.S., On the Convergence of Ishikawa Iterates to A Common Fixed Point of Multi-valued Mappings, Demonstratio Math., 36(4)(2003), 951-956.
- [15]DAFFER P.Z., KANEKO H., Fixed Points of Generalized Contractive Multi-valued Mappings, J. Math. Anal Appl, 192(1995), 655-666.
- [16]GERAGHTY M.A., On Contractive Mappings, Proc. Amer. Math. Soc.,40(1973), 604-608.
- [17]GOFFMAN C., PEDRICK G., First Course in Functional Analysis, Prentice Hall of India, Private Limited, New Delhi-11000 (1993).
- [18]ITOH S., Multi-valued Generalized Contractions and Fixed Point Theorems, Comment. Math. Univ. Carolin., 18(1977), 247-258.
- [19]JOSHI M.C., BOSE R.K., Some Topics in Nonlinear Functional Analysis, Wiley Eastern Limited (1985).
- [20]KANEKO H., A General Principle for Fixed Points of Contractive Multi-valued Mappings, Math. Japon., 31(1986), 407-411.
- [21]KANEKO H., Generalized Contractive Multi-valued Mappings and their Fixed Points, Math. Japon., 33(1988), 57-64.
- [22]KHAMSI M.A., KIRK W.A., An Introduction to Metric Spaces and Fixed Point Theory, John Wiley & Sons, Inc. (2001).
- [23]KUBIACZYK L, ALI N.M., On the Convergence of the Ishikawa Iterates to A Common Fixed Point for A Pair of Multi-valued Mappings, Acta Math.Hungar., 75(3)(1997), 253-257.
- [24]LlM T.C., On Fixed Point Stability for Set-valued Contractive Mappings with Applications to Generalized Differential Equations, J. Math. Anal. Appl.,110(2)(1985), 436-441.
- [25]MARKINS J.T., A Fixed Point Theorem for Set-valued Mappings, Bull Amer.Math. Soc., 74(1968), 639-640.
- [26]MIZOGUCHI N., TAKAHASHI W., Fixed Point Theorems for Multi-valued Mappings on Complete Metric Spaces, J. Math. Anal. Appl, 141(1989), 177-188.
- [27]NADLER S.B., Multi-valued Contraction Mappings, Pacific J. Math.,30(1969), 282-291.
- [28]PlCARD E., Memoire sur la Theorie des Equations aux Derivees partielles et Ia Methode des Approximations Successives, J. Math. Pures et AppL, 6(1890), 145-210.
- [29]RHOADES B.E., A Comparison of Various Definitions of Contractive Mappings, Trans. Amer. Math. Soc., 226(1977), 257-290.
- [30]RHOADES B.E., A Fixed Point Theorem for A Multi-valued Non-self Mapping, Comment. Math. Univ. Carolin., 37(1996), 401-404.
- [31]RHOADES B.E., WATSON B., Fixed Points for Set-valued Mappings on Metric Spaces, Math. Japon., 35(4)(1990), 735-743.
- [32]Rus I.A., Fixed Point Theorems for Multi-valued Mappings in Complete Metric Spaces, Math. Japon., 20(1975), 21-24.
- [33]Rus I.A., Generalized Contractions and Applications, Cluj Univ. Press, Cluj Napoca (2001).
- [34]Rus I.Α., PETRUSEL Α., PETRUSEL G., Fixed Point Theory, 1950-2000, Romanian Contributions, House of the Book of Science, Cluj Napoca (2002).
- [35]SINGH S.L., BHATNAGAR C., HASHIM A.M., Round-off Stability of Picard Iterative Procedure for Multi-valued Operators, Nonlinear Anal. Forum,10(2005), 13-19.
- [36]ZEIDLER E., Nonlinear Functional Analysis and its Applications-Fixed Point Theorems, Springer-Verlag, New York, Inc. (1986).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0091-0099
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.