PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

On some generalized new type difference sequence spaces defined by a modulus function in a seminformed space

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The idea of difference sequence spaces were introduced by Kizmaz [6] and generalized by Et. and Colak [4]. Later Tripathy, Esi and Tripathy [15] introduced the notion of the new difference operator Δnm for n, m ∈ N. In this paper we introduced some new type of generalized difference sequence spaces defined by a modulus function and the new type of statistically convergent generalized difference sequence space. We study their different properties and obtain some inclusion relations involving these new type difference sequence spaces.
Rocznik
Tom
Strony
15--24
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Department of Mathematics, Science and Arts Faculty, Adiyaman University, 020240, Adiyaman, Turkey, aesi23@hotmail.com
Bibliografia
  • [1]CONNOR J.S., On strong matrix summability with respect to a modulus and statistical convergence, Canadian Math. Bull., 32(2)(1989), 194-198.
  • [2]Esi A., Some new sequence spaces defined by a sequence of moduli, Tr. J. of Math., 21(1997), 61-68.
  • [3]ET M., ALTIN Y., ALTINOK H., Some generalized difference sequence spaces defined by a modulus function, FILOMAT, 17(2003), 23-33.
  • [4]ET M., COLAK R., On some generalized difference sequence spaces, Soochow J. Math., 21(1995), 377-386.
  • [5]FAST H., Sur la convergence statistique, Colloq. Math., 2(1951), 241-244.
  • [6]KIZMAZ H., On certain sequence spaces, Canadian Math. Bull., 24(1981), 169-176.
  • [7]KUTTNER B., Note on strong summability, J. London Math. Soc., 21(1946), 118-122.
  • [8]LEINDLER L, Uber die la Vallee-Pousinche Summierbarkeit Allgemeiner Orthogonalreihen, Acta Math. Hung., 16(1965), 375-378.
  • [9]MADDOX I.J., Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser-2, 18(1967), 345-355.
  • [10]MADDOX I.J., Sequence spaces defined by a modulus, Math. Proc. Camb.Phil. Soc., 100(1986), 161-166.
  • [11]MADDOX I.J., Elements of Functional Analysis, Cambridge Univ. Press, 1970.
  • [12]MURSALEEN, λ-statistical convergence, Math. Slovaca, 50(2000), 111-115.
  • [13]NAKANO H., Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
  • [14]RUCKLE W.H., FK spaces in which the sequence of coordinate vectors is bounded, Canad J. Math., 25(1973), 973-978.
  • [15]TRIPATHY B.C., Esi A., TRIPATHY B.K., On a new type of generalized difference Cesaro sequence spaces, Soochow J. Math., 31(3)(2005), 333-340.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0091-0096
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.