PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Warunki stabilizacji nanoklasterów węglowych w wodzie

Identyfikatory
Warianty tytułu
EN
Stabilization conditions of carbon nanoclusters in water
Języki publikacji
PL
Abstrakty
PL
W większości zaawansowanych zastosowań formy węgla o rozmiarach nanometrycznych (fulerenów, nano-diamentów, nano-grafitu i węgli shungitowych) są stosowane jako stabilne roztwory zdyspergowane w wodzie. Rozproszenie cząstek węgla shungitowego (ShC) do podstawowych jednostek strukturalnych jest możliwe w mediach wodnych, które to media umożliwiają otrzymanie stabilnych zawiesin ShC, od stadium początkowego, tj. proszku shungitowego, poprzez stadium obróbki kwasem i ozonowania. Średni rozmiar agregatów ShC zdyspergowanych w wodzie określono za pomocą metody dynamicznego rozproszenia światła oraz na podstawie wyników uzyskanych za pomocą TEM. Badania metodą SAXS zdyspergowanego kondensatu wykazały wzrost intensywności sygnału odpowiadającego rozmiarowi jednostki strukturalnej ~∼ 0,5 nm. Czynnikami stabilizującymi roztwory nanometrycznych ShC są zarówno jego duże klastery (>100) zawierające polarne i naładowane grupy funkcyjne, jak i jednostki strukturalne w formie „kulistej”, charakteryzujące się strukturą nieplanarną o rozmiarach mniejszych od 1 nm.
EN
Most of the advanced applications of nanocarbon materials (fullerenes, nano-diamonds, nano-graphite and shungite carbon) utilise their conversion into a form of stable aqueous dispersions. Shungite carbon (ShC) disintegration into structural units is feasible in aqueous media that allows us to prepare stable ShC aqueous dispersions, from initial stage, i.e. shuntige powder, to the stage of modification by consecutive acid treatment and ozonization. The average size of aggregates in ShC aqueous dispersions was determined by Dynamic Light Scattering and from TEM estimations. SAXS experiments of the condensed dispersion showed a rise in intensity of the signal corresponding to the size of its basic structural unit (BSU) ∼ 0.5 nm. When dissolving ShC nano-particles, both large clusters (>100 nm) containing polar and charged functional groups and the BSU in the form of “bowls”, characterized by a nonplanar structure with dimensions less than 1 nm, contribute to stabilization.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
207--211
Opis fizyczny
Bibliogr.22 poz., 2 rys., 3 tabl.
Twórcy
autor
Bibliografia
  • 1. Liu K., Cruzan J.D, Saykally R.J., Water Clusters. Science, 1996, vol.271 (5251), p. 929.
  • 2. Vogler E.A., Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 1998, vol. 74 (1-3), p. 69.
  • 3. Biele M., Kodre A., Arcon I., Grdadolnik J., Pejovnik S., Besenhard J.O., Adsorption of Cetyltrimethylammonium bromide on carbon black from aqueous solution. Carbon, 1998, vol. 37 (7), p. 1207.
  • 4. Rozhkova N.N., Activation of Fullerene-like Structures in Shungite Carbon, in: Proceeding of the International conference Carbon’02. Beijing, China, 2002, P. 81 (CD-extended abstract).
  • 5. Toporov G.N., Semenov M.V., Eliseeva R.A., Khachatur’yan, Tatarenko V.A., Production of Colloidal Graphite Samples Without Stabilizing Additions. Colloidny Zh. 1978, XL (3), p. 575 (in Russ).
  • 6. Kruger A., Kataoka F., Ozawa M, Fujino T., Suzuki Y., Aleksenskii A.E., Vul A., Ozawa E., Unusually tight aggregation in detonation nano-diamond: identification and disintegration. Carbon, 2005, vol. 43, p. 1722.
  • 7. Korobov M.V., Avramenko N.V., Bogachev A.G., Rozhkova N.N., Osawa E., Nanophase of Water in Nano-Diamond Gel. J. Phys. Chem. C, 2007, vol. 111, p. 7330.
  • 8. Andrievsky G.V., Kosevich M.V., Vovk O.M., On the Production of an Aqueous Colloidal Solution of Fullerenes. J. Chem. Soc. Chem. Commun., 1995, vol. 12, p. 1281.
  • 9. Prilutski Yu., Durov S., Yashchuk V., Theoretical Predictions and Experimental Studies of Self-Organized C60 Nano-particles in Water Solution and on the Support. Eur. Phys. J. D., 1999, p. 341.
  • 10. Avdeev M.V, Khokhryakov A., Tropin T.V., Andrievsky G.N., Klochkov V.K., Structural Features of Molecular -Colloidal Solutions of C60 Fullerenes in Water by small- Angel neutron scattering. Langmuir, 2004 (20), p. 4363.
  • 11. Deguchi S., Allargova R.G., Tsujii K., Stable Dispersions of Fullerenes, C60 and C70 in Water. Preparation and Characterization. Langmuir, 2001, (17), p. 6013.
  • 12. Scharff P., Risch K., Carta-Abelmann L., Dmytruk I.M., Bilyi M.M., Golub O.A. et.al., Structure of C60 fullerene in Water: Spectroscopic Data. Carbon, 2004, vol. 42, p. 1203.
  • 13. Rozhkov S.P, Goryunov A.S., Rozhkova N.N., EPR spin-probe study of carbon nano-particles hydration properties in aqueous dispersions, in: Vezirogly T.E., ed. Hydrogen materials_science and chemistry of carbon nanomaterials. Springer Science+Bisuness Media, 2006, p. 539.
  • 14. Rozhkova N.N., Gribanov A.V., Khodorkovskii M.A., Water mediated modification of structure and physical chemical properties of nanocarbons. N/Diamond Relat. Mat., 2007, in press.
  • 15. Rozhkova N.N., Andrievsky G.V., Fullerenes in shungite carbon., in: Pilipenko V. A. and Poklonski N. A. eds, Fullerenes and Fullerene like Structures, Minsk: Bel. St. University, 2000. p. 63-68 (In Russian).
  • 16. Emel’yanova G.I., Gorlenko L.E., Tikhonov N.A., Rozhkova N.N., Rozhkova VS., Lunin V.V., Oxidative modification of Shungites. Russian Journal of Physical Chemistry, 2004, vol. 78 (7), p. 1070.
  • 17. Rozhkova N.N., Golubev E.A., Siklitsky V.I., Baidakova M.V, Structural organization of shungite carbon. In: Vityaz' PA. et al eds, Fullerene and fullerene-like structures. Minsk: ITMO BAS. 2005: 100-07 (In Russian).
  • 18. Korobov M.V., Avramenko N.V., Ivanova N.I., Rozhkova N.N., Rozhkov S.S., Nanoclustersin Aqueous dispersions of Fullerenes and Shungite, in: Proceedings of the 3-th Inter. Confer. «Carbon: Fundamental problem of science, technology». Moscow State University, 2004, p. 123 (In Russian).
  • 19. Rozhkov S.P., Kovalevskii V.V., Rozhkova N.N., Fullerene- Containing Phases Obtained from aqueous Dispersions of Carbon Nano-particles. Russian Journal of Physical Chemistry A, 2007, vol. 81 (6), p. 952.
  • 20. Avdeev M.V., Osawa E., Rozhkova N.N., Garamus V.M., SANS study of dispersed ultrananocrystalline diamond, in: A. Schreyer, J. Volbrandt, R. Willumeit. eds, GeNF-Experimental report 2005, GKSS. 2006, 4, p. 33.
  • 21. Kovalevski V.V., Buseck P.R., Cowley J.M, Comparision of carbon in Shungite rocks to Other Natural Carbons: An X-ray and TEM Study. Carbon, 2001, vol. 39, p. 243.
  • 22. Gladchenko S., Gribanov A., Rozhkova N., Dipole Moment of Fullerene and basic Structural Unit of Shungite Carbon: Proceedings of the 7th Biennial International Workshop Fullerenes and Atomic Clusters, St Petersburg, Russia, 2005, p. 293.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0079-0075
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.